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Fig. 1: In this paper, we compare three different classes of control policies for the task of agile quadrotor flight. From left to right: policies specifying
desired linear velocities (LV) (they rely on a control stack that maps the output velocities to individual rotor thrusts), policies commanding collective
thrust and bodyrates (CTBR) (they rely on a low-level controller that maps the output bodyrates to individual rotor thrusts), policies directly outputting

single-rotor thrust (SRT).

Abstract— Quadrotors are highly nonlinear dynamical sys-
tems that require carefully tuned controllers to be pushed to
their physical limits. Recently, learning-based control policies
have been proposed for quadrotors, as they would potentially
allow learning direct mappings from high-dimensional raw sen-
sory observations to actions. Due to sample inefficiency, training
such learned controllers on the real platform is impractical
or even impossible. Training in simulation is attractive but
requires to transfer policies between domains, which demands
trained policies to be robust to such domain gap. In this
work, we make two contributions: (i) we perform the first
benchmark comparison of existing learned control policies for
agile quadrotor flight and show that training a control policy
that commands body-rates and thrust results in more robust
sim-to-real transfer compared to a policy that directly specifies
individual rotor thrusts, (ii) we demonstrate for the first time
that such a control policy trained via deep reinforcement
learning can control a quadrotor in real-world experiments at
speeds over 45 km/h.

SUPPLEMENTARY MATERIAL

A narrated video illustrating our findings is available at
https://youtu.be/zgdfVgq2uWUA

I. INTRODUCTION

Agile quadrotor flight is a challenging problem that re-
quires fast and accurate control strategies. In recent years,
numerous learning-based controllers have been proposed
for quadrotors. In contrast to their traditional counterparts,
learned control policies have the potential to directly map
sensory information to actions, alleviating the need for
explicit state estimation [1]-[4].

Prior work has proposed learned control policies that make
use of various control input modalities to the underlying
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platform: while some directly specify motor commands [1],
[5], [6], others, instead, output desired collective thrust and
bodyrates [2], [7] (that are then executed by a low-level
controller), or velocity commands [8], [9] (that are then
executed by a control stack), or even a sequence of future
waypoints [4]. Most published approaches do not justify their
choice of control input. This renders performance compar-
isons among them and, thus, scientific progress difficult.

Due to the high sample complexity of learning-based
policies, they are often trained in simulation, which then
requires transferring the policy from simulation to the real
world. This transfer between domains is known to be hard
and is typically approached by increasing the simulation
fidelity [10], [11], by randomization of dynamics [6], [12]
or rendering properties [13], [14] at training time, or by
abstraction of the policy inputs [2], [4]. Apart from simula-
tion enhancements and input abstractions, also the choice of
action space of the learned policy itself can facilitate transfer.
Policies that generate high-level commands, such as desired
linear velocity or future waypoints [4], have a reduced
simulation to reality gap, as they abstract the task of flying
by relying on an existing underlying control stack. However,
while facilitating transfer, such abstractions also constrain the
maneuverability of the platform. Approaches that do not rely
on such abstractions (like those specifying collective thrust
and body rates or even single-rotor-thrust commands) can
potentially execute much more agile maneuvers, but have so
far only been shown for near-hover trajectories [6] or require
a dedicated policy for each maneuver [2].

In this paper, we compare and benchmark learned control
policies with respect to their choice of action space. Specif-
ically, we compare them in terms of peak performance in
case of perfect model identification, as well as in terms of
their transferability to a new platform with possibly different
dynamics properties. We compare the learned policies with
respect to their flight performance, which we characterize by
the average tracking error on a set of predefined trajectories.

Our experiments, performed both in simulation and on
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a real quadrotor platform, show that control policies that
command collective thrust and bodyrates are more robust
to changes in the dynamics of the platform without compro-
mising agility. Additionally, compared to high-level action
parameterizations, specifying collective thrust and bodyrates
allows performing significantly more agile maneuvers.

Finally, we demonstrate the first learning-based controller,
trained via deep reinforcement learning, that is able to per-
form previously unseen agile maneuvers on a real quadrotor
flying at speeds over 45 km/h. The policy is trained purely in
simulation and transferred to the real platform without any
fine-tuning.

II. RELATED WORK

In this section, we give an overview of the related work
for learning-based quadrotor control while focusing on the
choice of action space. While there exists a comparison of ac-
tion spaces of learned policies for 2D locomotion [15], such
analysis is still lacking in the aerial robotics community. In
the following, we group learned control strategies according
to their action space into a) Linear Velocity Commands (LV),
b) Collective Thrust and Bodyrates (CTBR), and c) Single
Rotor Thrusts (SRT).

Linear Velocity. Control policies specifying high-level com-
mands, often in the form of receding-horizon waypoints
or velocity commands, have been proposed for a variety
of tasks, such as forest trail navigation [8], navigation in
city streets [9] and indoor environments [13], or even drone
racing [16]. Recently, [17] have used model-based meta
reinforcement learning to generate velocity commands that
adapt to unknown payloads. While these approaches have
been successfully deployed in the real world, only [16]
achieved flight speeds beyond 3 m/s, while the other policies
result in near-hover flight. As the control policy does not
take into account the dynamic constraints of the platform, it
can be easily transferred, but does not exploit the platform’s
full dynamic capabilities. Furthermore, such approaches rely
on an existing underlying control stack, which itself is
dependent on high-quality state estimation.

Collective Thrust and Bodyrates. Compared to specifying
linear velocity commands, controlling collective thrust and
bodyrates has been shown to allow performing significantly
more aggressive maneuvers. In [7], a racing policy directly
maps image observations to collective thrust and bodyrate
commands. Although the policy successfully races through
challenging race tracks in simulation, it is not deployed
on a real platform. In [18], the authors propose combining
a classical controller with a learned residual command to
correct for aerodynamic disturbances such as ground effect
during near-hover flight. In [2], the authors use privileged
learning to imitate a model predictive controller (MPC) to
perform acrobatic maneuvers. While this approach success-
fully showed acrobatic flight on a real platform, it was
constrained to a single maneuver and required a separate
policy for each trajectory. In contrast to generating high-level
commands, specifying collective thrust and bodyrates does

not necessitate estimation of the full state of the platform,
but only requires inertial measurements to perform feedback
control on the bodyrates. This information is readily available
at high frequency in today’s flight controllers, rendering
collective thrust and bodyrates the preferred control input
modality for professional human pilots.

Single-Rotor Thrusts. There are several works that propose
to directly learn to control individual rotor thrusts [1], [5],
[6], [19]-[22]. As this control input does not require any
additional control loop, it provides direct access to the actu-
ators and as a result correctly represents the true actuation
limits of the platform. It constitutes the most versatile control
input investigated in this work. In [5], [6], the authors
train a policy to map state observations directly to desired
individual rotor thrusts. While [5] required a PID controller
at data collection time to facilitate training, [6] demonstrated
training of a stabilizing quadrotor control policy from scratch
in simulation and deployment on multiple real platforms.
[19] trains a policy for autonomous drone racing. Their
approach demonstrates competitive racing performance in
simulation, but is not deployed on a real quadrotor. In [1],
the authors train a policy to perform obstacle avoidance using
guided policy search by imitating an MPC controller that has
access to privileged information about the environment. One
of the few works that does not rely on simulated data for
training is presented in [20], where the authors propose an
approach based on deep model-based reinforcement learning
to train a hovering policy for the Crazyflie quadrotor. The
trained policy managed to control the real platform in hover
for 6s before crashing. A position controller is trained via
reinforcement learning in [21] and extended in [22] to be
robust against external disturbances such as wind. In [23],
the authors train an attitude controller via deep reinforcement
learning. They argue that their approach provides a better
flight performance compared to a PID controller, while still
being computationally lightweight. Although this method
outputs individual rotor thrusts, it is still dependent on a
higher-level controller that produces attitude setpoints to
achieve stable flight.

While some of these works show successful deployment
of their policies in the real world, none achieved agile flight,
only reaching maximum speeds below 4 m/s.

III. QUADROTOR DYNAMICS

To train a control policy for agile flight, we imple-
ment the quadrotor dynamics as an environment in Tensor-
Flow Agent The following section gives a brief overview
of the dynamics implemented in the simulator.

A. Notation

Scalars are denoted in non-bold [s, S], vectors in lowercase
bold v, and matrices in uppercase bold M. World W and
Body B frames are defined with orthonormal basis i.e.
{xw,yw,zw}. The frame B is located at the center of
mass of the quadrotor. A vector from coordinate p; to po
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Fig. 2: Diagram of the quadrotor depicting the world and body frames and
propeller numbering.

expressed in the VW frame is written as: yyv1o. If the vector’s
origin coincides with the frame it is described in, the frame
index is dropped, e.g. the quadrotor position is denoted as
pwsi. Unit quaternions ¢ = (qu, ¢z, ¢y, ¢-) With ||| =1
are used to represent orientations, such as the attitude state
of the quadrotor body gy 5.

Finally, full SE3 transformations, such as changing the
frame of reference from body to world for a point pp1, can
be described by ywpp1 = witws + qws © pp1. Note the
quaternion-vector product is denoted by © representing a
rotation of the vector by the quaternion as in ¢ ® v = qvq,
where q is the quaternion’s conjugate.

B. Quadrotor Dynamics

The quadrotor is assumed to be a 6 degree-of-freedom
rigid body of mass m and diagonal moment of inertia matrix
J = diag(Jy, Jy, J.). Furthermore, the rotational speeds of
the four propellers €2; are modeled as first-order system with
time constant ko, Where the commanded motor speeds Q¢pmq
are the input.

The state space is thus 17-dimensional and its dynamics
can be written as:

Pwa ow
e s LS/Q]
T= OB =L (qws © (Firop + Farg)) + 9w | M
“s I (Tprop — wB X Jwp)
L SO
where gyy = [0,0,—9.81m/s?|T denotes earth’s gravity,

JSorops Tprop are the collective force and the torque produced
by the propellers, and fy.g is a linear drag term. The
quantities are calculated as follows:

fprop:Zfia Tprop:ZTi+rP,ix.fia (2

[kvva,a: kvaB,y kszB,z]T ) (3)

fdrag = -

where 7p; is the location of propeller 7 expressed in the
body frame , f;, 7; are the forces and torques generated by
the i-th propeller, and (kyz, vy, kv.) [24], [25] are linear
drag coefficients. A commonly used [24], [26] model for the
forces and torques exerted by a single propeller is presented
in the following: the thrust and drag torque are assumed to

be proportional to the square of the propellers’ rotational
speed. The corresponding thrust and drag coefficients ¢; and
cq can be readily identified on a static propeller test stand. By
also measuring the rotational speed of the propeller during
those tests, the motor time constant ko, can be estimated.
Overall, the force and torque produced by a single propeller
are modeled as follows:

£i(Q) = [0 0 CI.QﬂT , Ti(Q) = [O 0 Cd'QQ}T €]

The dynamics are integrated using a symplectic Euler
scheme with step size 1ms. For numerical values of the
identified mass, inertia, and thrust and drag constants, we
refer the reader to Section [V-C|

IV. METHODOLOGY

We address the challenge of robust and agile quadrotor
flight using learned control policies by identifying the best
choice of action space for the task. We train deep neural
control policies that directly map observations o; in the
form of platform state and a reference trajectory to control
actions u;. The control policies are trained using model-free
reinforcement learning (PPO [27]) purely in simulation on
a set of over 600 reference trajectories that cover the full
performance envelope of the quadrotor. We train policies of
three different types that only differ in their choice of action
space wu;, as illustrated in Figure

1) Linear Velocity & Yaw Rate (LV): Each action spec-
ifies a desired linear velocity and yaw rate, which are
then tracked by a full control stack with access to accu-
rate state estimation. my(0;) = uy = {Vg, vy, v, W, }

2) Collective Thrust & Bodyrate (CTBR): Each ac-
tion represents desired collective thrust and bodyrates,
which are tracked by a low-level controller using
measurements from an inertial sensor. 7wcrpr(0r) =
U = {¢, Wy, Wy, ws}

3) Single-Rotor Thrust (SRT): Each action directly
specifies desired individual rotor thrusts, which are
then applied for the duration of a control step.
msrr(0r) = wy = {f1, f2, f3, fa}

All policy types feature a 4-dimensional action space, are

fed the same observations o;, and are represented by the
same network architecture.

A. Observations, Actions, and Rewards

An observation o; obtained from the environment at time ¢
consist of (i) a history of previous states and applied actions
and (ii) the future reference along the trajectory. Specifically,
the state information contains a history of length H = 10
of the z-position of the platform, its velocity, attitude rep-
resented as rotation matrix, and bodyrates. Even though
the simulator internally uses quaternions, we pass attitude
as rotation matrix to the networks to avoid discontinu-
ities [28]. The reference information consists of a sequence
of length R = 10 of future relative position, velocity, and
bodyrates as well as the full rotation matrix of the reference.
The position and velocity components of the reference states
are expressed as the residual from the current state of the



quadrotor. All observations are normalized before passing
them to the networks.

Since the value network is only used during training time,
it can access privileged information about the environment
that is not accessible to the policy network. Specifically, this
privileged information contains the mass and inertia biases
applied during randomization, as well as the sampled drag
coefficients and the additive gravity bias. An overview of the
observation provided to the policy and value network is given
in Table |Il The value network and the policy network share
the same architecture but have different parameters. The
state and reference information are encoded by two separate
fully-connected neural networks with 3 hidden layers with
64 neurons each. The encodings are then concatenated and
fed to a final multilayer perceptron with two layers of 128
neurons each.

We use a dense shaped reward formulation to learn the
task of agile trajectory tracking. The reward r; at timestep ¢
is given by

Tt = — (wt - wref,t)TQ(wt - wref,t) @)

- (ut - uref,t)TR(ut - uref,t) — Tcrash »

where Q and R are diagonal matrices, x; the full state of
the quadrotor, u; the applied action, Tf; and s their
respective references, and 7.,y 1S @ binary penalty that is
only active when the altitude of the platform is negative,
which also ends the episode.

B. Policy Learning

All control policies are trained using Proximal Policy Op-
timization (PPO) [27]. PPO has been shown to achieve state-
of-the-art performance on a set of continuous control tasks
and is well suited for learning problems where interaction
with the environment is fast. Data collection is performed by
simulating 50 agents in parallel. At each environment reset,
every agent samples a new trajectory from the set of training
trajectories and is initialized with bounded perturbation at the
start of the trajectory.

Inspired by prior work on simulation to reality transfer,
we perform randomization of the dynamics of the platform
during training time and apply Gaussian noise to the pol-

TABLE I: Input features to the policy and value networks. The state is
represented by a sliding window of length H of current and previous states,
the reference is represented by a receding-horizon window of length R of
current and future reference states. Both networks observe the same state
and reference, but only the value network observes privileged information,
such as biases in mass, inertia, drag and gravity applied during training with
domain randomization.

Input Components \ Dimensions Policy NW  Value NW
z-Position Hx1 v v
Velocity H x3 v v
State Attitude Hx9 v v
Bodyrates H x3 v v
Privileged Info. | H x 7 X v
Position Rx3 v v
Reference Velocity Rx3 v v
Attitude Rx9 v v
Bodyrates Rx3 v v

TABLE II: Physical parameters of the simulation. At the start of each rollout,
the parameters are sampled from a uniform distribution around the nominal
values with the randomization specified above.

Parameter | Nominal Value Randomization
Mass [kg] 0.768 +30%
Inertia [kg m?] [2.5e-3, 2.1e-3, 4.3e-3] +30%
Gravity [kg m/s?] [0.0, 0.0, -9.81] +0.4

kvz [Ns/m] 0.3 +0.3

kvy [Ns/m] 0.3 +0.3

kv [Ns/m] 0.15 +0.15

¢; [Ns?/rad?] 1.563e-6 +0.0

cg [Nms? /rad?] 1.909-8 +0.0

TABLE III: Training hyperparameters.

Hyperparameter | Value
7 (discount factor) 0.98
Actor learning rate 3e-4
Critic learning rate 3e-4
Entropy regularization le-2
€ (importance ratio clipping) 0.2

icy observations. Specifically, we randomize mass, inertia,
aerodynamic drag, and thrust variations of the quadrotor.

C. Training Details

The policies are trained in a simulated quadrotor environ-
ment implemented using TensorFlow Agents. The nominal
quadrotor parameters such as mass and inertia are identified
from the real platform and are summarized in Table
together with the amount of randomization applied at training
time. Training hyperparameters specified in Table

During trajectory tracking, the agent receives at
each timestep a reward that penalizes tracking error
and deviation from the reference action as laid out
in Eq. (). The matrices @ and R have nonzero
elements only on the diagonal. Specifically, we use
Q = dlag{Ol . 13><1, 0.02 - 19><1, 0.002 - 13><1, 0.01- 13><1}
and R = diag{0.001-1441}. The episode is terminated
when the quadrotor crashes (i.e. p, < 0.0) with a reward of
Terash = —5H00.

V. EXPERIMENTS

We design our experimental setup to investigate the in-
fluence of the choice of action space on flight performance.
Specifically, we design our experiments to answer the follow-
ing research questions: (i) How is the peak control perfor-
mance in situation of perfect model identification affected by
the actuation model? (ii) How does the choice of action space
affect the robustness against model mismatch? (iii) What is
the impact of the choice of action space on training data
requirement?

We evaluate the performance of all policies on a set of
test trajectories of varying agility, spanning from a hover
trajectory up to a racing trajectory [29] that requires to
perform accelerations beyond 3g to track. All test trajectories
are within the distribution of training trajectories and are
feasible, i.e. they do not exceed the platform limits. Table
shows the key metrics of all test trajectories.



A. Simulation Experiments

In a set of controlled experiments in simulation, the track-

ing performance of each policy is investigated. We compare
performance with respect to average positional tracking error.
Experiments are performed on the test trajectories in two
settings: (i) in the Nominal setting, the test environment
perfectly matches the training environment; (ii) in the Model
Mismatch setting, the environment at test time is differ-
ent from the training environment. Specifically, we use in
setting (ii) a quadrotor simulation that was identified from
real flight data and uses blade-element momentum theory to
accurately model the aerodynamic forces acting on the plat-
form [11]. We also apply a control delay of 20 ms to simulate
wireless communication latency. Note that we can only use
this simulation at test time, since it is computationally too
expensive to run it at training time.
While setting (i) is focused on the maximum possible per-
formance achievable by a method and its training data re-
quirement, setting (ii) investigates the robustness of policies
against model mismatch. All policies tested in setting (i) have
been trained specifically for the nominal environment without
any randomization, while the policies tested in setting (ii)
have been trained on a distribution of environments as ex-
plained in Section We also compare against two state-
of-the-art classical control approaches: MPC-SRT represents
an optimization-based controller [30] that directly controls at
individual rotor thrust level, while MPC-CTBR makes use
of a low-level controller. All learned policies are run at a
constant frequency of 50 Hz, while the traditional controllers
are executed at 100 Hz.

Nominal Model. Table |V| shows the results of the experi-
ments in the Nominal setting (i). SRT and CTBR policies
perform comparable in this setting, with CTBR marginally
outperforming on slower trajectories, while SRT performs
slightly better on the more aggressive maneuvers. These
results confirm previous findings from experiments in the
domain of 2D locomotion [15]: policies that operate in
concert with an underlying low-level controller outperform
end-to-end policies. The policies that produce linear velocity
commands (LV) perform inferior especially for agile maneu-
vers. This can be explained by the fact that the action space
of linear velocity commands does not correctly represent the
dynamic constraints of a quadrotor platform, which leads to
a reduced maneuverability. This result extends the findings
of [15] and shows that more abstraction does not necessarily
lead to better performance. Compared to the learned policies,

TABLE IV: Maxima of velocity, mass-normalized collective thrust and
bodyrates of the test trajectories.

Trajectory \ [[Vlmax[m/s]  cmax[m/s?]  ||w]max[rad/s]
Hover 0.0 9.81 0.0
RandA 3.87 12.68 1.27
RandB 6.36 13.54 1.52
RandC 8.92 14.52 1.93
RaceA 10.48 16.18 5.74
RaceB 11.97 24.94 8.37
Split-S 12.40 26.35 6.11
RaceC 14.22 33.04 11.56

TABLE V: Average positional tracking error in centimeter on each test
trajectory in case of no model mismatch. The table reports results for learned
policies (SRT, CTBR, LV), and traditional approaches (MPC-SRT, MPC-
CTBR). Results report mean and standard deviation for 10 trained policies.

| SRT CTBR LV | MPC-SRT MPC-CTBR
Hover 1.0+£0.2 0.6+0.2 7.0+1.6 0.1 0.2
RandA 1.5£0.2 0.9+0.1 1544+3.0 0.2 0.3
RandB 24+£0.2 1.6+0.1 61.5+21.0 0.2 0.4
RandC 3.0+0.3 2.0£0.2 85.7%11.5 0.2 0.4
RaceA 5.0£1.2 5.0+1.0 121.1£25.8 0.3 1.3
RaceB 7.1+£1.8 6.9+1.5 170.2+16.3 0.7 3.0
Split-S 3.5+04 6.6+1.1 92.1+20.8 1.0 2.1
RaceC 9.2+£3.2 12.3£2.2 197.9438.1 1.2 39

TABLE VI: Average positional tracking error in centimeter on each test
trajectory obtained in a quadrotor simulator based on blade-element mo-
mentum theory with a control delay of 20 ms. Results report mean and
standard deviation for 10 trained policies.

\ SRT CTBR LV \MPC-SRT MPC-CTBR
Hover 11.3+4.5 0.6£0.5 6.7£2.0 1.0 0.5
RandA 12.04+4.0 1.2+£0.5 17.8+14 33 1.1
RandB 144424 2.240.8 57.0£12.0 7.0 2.0
RandC 17.64+5.9 2.6+0.8 789+134 8.5 2.6
RaceA crash  5.6+1.7 144.04+20.1 12.6 4.8
RaceB crash  10.0+4.0 171.44+17.0| crash 6.3
Split-S crash  6.942.6 83.849.7 11.3 114
RaceC crash  14.945.5 176.7422.0| crash 7.5

the traditional control approaches (MPC-SRT, MPC-CTBR)
perform significantly better in the Nominal setting. This
results is expected, as the system dynamics implemented
in the MPC exactly match the simulated dynamics of the
platform. We still provide these results to allow a comparison
with traditional control approaches.

Model Mismatch. Table [Vl shows the results of the Model
Mismatch scenario. Controllers that directly specify single
rotor thrusts exhibit a significant reduction in performance,
especially for agile trajectories: SRT has a significantly
higher tracking error for slow trajectories and often crashes
on the faster maneuvers; MPC-SRT also has higher tracking
error and even crashes on RaceB and RaceC. We report
crash, as soon as one policy crashes on the maneuver. The
CTBR policies (as well as MPC-CTBR) are less affected
by the model mismatch and can still execute all maneuvers
with a modest increase in tracking errors. The LV policies
show a smaller sensitivity to the model mismatch, but are
still consistently outperformed by the CTBR policies on all
trajectories.

Training Data Requirement. Figure [3| depicts the learning
curves of all policies in case of no domain randomization
(left) and with domain randomization (right). All policies
have been trained for a total of 50M environment inter-
actions. The learning curves also show the robustness of
CTBR and LV to changes in the platform dynamics, we even
observed that training with a randomized platform acceler-
ates learning in the early stages of training. In contrast, the
learning curves of SRT in case of domain randomization
initially exhibit a high variance, train slower, and converge
to a final performance substantially lower than in case of no
domain randomization.

Influence of Delay. Our experiments show that the per-
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Fig. 3: Learning curves of policies trained without (left) and with (right) domain randomization. All policies are trained for a total of SOM environment
interactions. Learning curves show mean performance and standard deviation computed over all trained policies.
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Fig. 4: Sensitivity to control delay on three trajectories of increasing agility. The results show that policies that operate on single rotor thrust (SRT) are

less robust against control delay.

formance of the tested control policies varied significantly
in case of unknown control delay. Figure [] shows that
policies that operate at higher abstraction levels such as LV or
CTBR are less sensitive to such delay. Furthermore, accurate
identification of control delay is more important for agile
trajectories; while hover is possible for CTBR without a
noticeable decrease in performance for latencies up to 60 ms,
the same latency leads to a crash on the racing trajectory.

B. Real World Experiments

We assess the performance of different control policies
when deployed on a real quadrotor platform. As in the
simulation experiments, we execute a set of trajectories
and compare tracking performance between the methods
presented in Section [[V] We encourage the reader to watch
the supplementary video to understand the dynamic nature
of these experiments.

The results of the real world experiments are shown in
Table Due to its significant sensitivity to control delays
TABLE VII: Positional tracking error in centimeter on a set of test

trajectories executed in the real world. Results report mean and standard
deviation for 5 trained policies.

\ CTBR LV \ MPC-CTBR
Hover 4.4+1.4 6.242.0 3.0
RandA 8.1+1.0 60.0£16.8 8.0
RandB 8.6+0.8 87.0+30.3 8.0
RandC 47.8+9.9 134.8+19.6 14.0
Circle 31.84+44 170.7£11.6 25.0
Lemniscate 26.8+4.4 189.5+13.7 16.0
Racing 53.0+£9.2 200.8+14.5 20.0

and a communication latency of 60 ms imposed by the real
system, the SRT policies could not be deployed. The CTBR
policies instead manage to fly unseen maneuvers on the real
platform despite the control delay. The LV policies transfer to
the real platform as well, but CTBR significantly outperforms
on agile trajectories. Compared to the results in the BEM
simulator, tracking errors are higher in the real world mainly
due to unmodelled effects such as varying battery voltage,
imperfect motor thrust mappings, and torque imbalances
due to imperfect mass distribution. Throughout the tested
trajectories, the CTBR policies reach accelerations of up
to 3g and speeds beyond 45km/h, which outperforms the
previous state of the art in learning-based quadrotor control
by a factor of 3 in terms of speed.

VI. CONCLUSION

We presented a comparison of learning-based controllers
for agile quadrotor flight. We compared policies that specify
individual rotor thrusts, collective thrust and bodyrates, and
linear velocity commands. While all tested policy types
were able to learn a universal flight controller, they differed
strongly in terms of peak performance and robustness against
dynamics mismatch. We identified that policies producing
collective thrust and bodyrates exhibit strong resilience
against dynamics mismatch and transfer well between do-
mains while retaining high agility. This work can serve as
guideline for future work on learning-based quadrotor control
by identifying the control input modality that is best suited
for agile flight.
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