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User-Conditioned Neural Control Policies for Mobile Robotics
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Abstract— Recently, learning-based controllers have been
shown to push mobile robotic systems to their limits and
provide the robustness needed for many real-world applications.
However, only classical optimization-based control frameworks
offer the inherent flexibility to be dynamically adjusted during
execution by, for example, setting target speeds or actuator
limits. We present a framework to overcome this shortcoming of
neural controllers by conditioning them on an auxiliary input.
This advance is enabled by including a feature-wise linear
modulation layer (FiLM). We use model-free reinforcement-
learning to train quadrotor control policies for the task of
navigating through a sequence of waypoints in minimum time.
By conditioning the policy on the maximum available thrust
or the viewing direction relative to the next waypoint, a user
can regulate the aggressiveness of the quadrotor’s flight during
deployment. We demonstrate in simulation and in real-world
experiments that a single control policy can achieve close to
time-optimal flight performance across the entire performance
envelope of the robot, reaching up to 60 km/h and 4.5 g in
acceleration. The ability to guide a learned controller during
task execution has implications beyond agile quadrotor flight,
as conditioning the control policy on human intent helps
safely bringing learning based systems out of the well-defined
laboratory environment into the wild.

Video: https://youtu.be/rwT2QQZEH6U

I. INTRODUCTION

Recently, learned controllers have become extremely pop-
ular in the mobile robotics community due to their success
in a variety of complex real-world tasks, such as legged
locomotion in challenging environments [1], underground
exploration [2], autonomous drone racing [3]–[5], and virtual
car racing [6]. In all the aforementioned works, neural-
network controllers outperform their classical model-based
counterparts both in terms of performance and success rate.
However, this performance comes at the expense of adapt-
ability, as the control approaches are trained to overfit on a
narrowly defined task. A standard neural controller can only
rigidly execute the specific task that it has been trained on
and lacks the versatility of traditional model-based control.
Consider, for example, a mobile robot tasked with time-
optimal navigation: using model-predictive control (MPC) it
would be straightforward to limit the maximum acceleration
during deployment by adjusting the actuator constraints
inside the model [7]. However, most neural controllers cannot
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Fig. 1. Conditioning a control policy for agile quadrotor flight on an
auxilliary input can be achieved through a FiLM architecture [8]. There,
the intermediate activations of a policy that directly maps observations to
control commands are linearly transformed based on the conditioning signal
supplied by the user. In this work, we study conditioning on the maximum
thrust-to-weight ratio (agility) and the viewing direction of the drone w.r.t
the next waypoint.
be regulated and naively adding an additional input to the
learned policy may not lead to the desired performance.

This paper proposes an approach to alleviate the drawback
of rigid task execution of learning-based controllers by
conditioning the control policies on an auxiliary input which
an operator (human, high-level planner) can then set to
influence the neural controller as shown in Fig. 1. Aside from
increasing the versatility, training a policy that can not only
react to the environment but also condition its computed con-
trol actions on human intent allows safely bringing learning-
based systems out of the controlled laboratory environment
into the wild.

Training an embodied agent that can react to user inputs
is a difficult endeavor as it requires to learn an entire distri-
bution of policies, as opposed to learning a static policy that
maps sensory observations to actions. Prior work primarily
exists in the context of robotic manipulation conditioned on
visual or natural language input [9], [10]. This so-called
multi skill learning strongly focuses on handling complex
visual or natural language queries [11] while the robotic
system is mostly simulated and has minimal complexity from
a control engineering perspective. Closely related are the
visual question answering tasks encountered in the computer
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Fig. 2. Overview of the different architectures for conditioning of neural networks commonly found in literature. Boxes in gray represent optional
components that can also be replaced with a direct connection. The variable o denotes some vector of observations (e.g. the system state) supplied to the
policy. The conditioning signal is denoted by ζ and the output of the network (e.g. control action) is denoted by a.

vision community, where networks are again conditioned on
complex natural language user queries [8]. In the context
of mobile robotics, to the best of the authors’ knowledge,
only one prior work [12] exists where conditioning has been
applied for three discrete user inputs: a remote-controlled
car is trained to either turn left, go straight, or turn right
at intersections by using a control network with a shared
encoder and three disjoint network heads that are selected
based on the operator’s input.

A. Contribution
We present the first learning-based controller for an au-

tonomous mobile robot—an agile quadrotor platform is used
in this work—where the vehicle’s agility and its viewing
direction can be influenced through a continuous condi-
tioning input supplied by a user. This advance is made
possible by integrating a modified version of the feature-wise
linear modulation layer (FiLM) [8] into the neural network
controller, which is trained using model-free reinforcement
learning. To support our choice of the FiLM architecture,
we present a large ablation study which compares the
commonly used methods in multi-skill learning tasks. The
FiLM approach outperforms multi-head networks as well as a
naive feature concatenation baseline in terms of performance
and robustness. Finally, we demonstrate the applicability
of our proposed method to real-world mobile robotics by
conditioning a control policy for perception-aware, near
time-optimal quadrotor flight. The continuous user input
regulates the desired agility level or guides a perception
objective. Furthermore we show that there is a less than a 2%
performance difference between a single policy conditioned
on a user-specified agility level and a set of overfit policies
that can only operate at a fixed level.

II. RELATED WORK

Outside the field of mobile robotics, conditioning neural
networks on auxiliary user inputs has been studied in recent
years for a variety of applications. In most of them, the
conditioning signal is given by a natural language prompt
specified by the user and the conditioned network is tasked
with answering a question [8], controlling a robotic manip-
ulator arm [9], [10] in a specified way, or planning a path
such that a vehicle visits specific areas on a map [13]. Other
tasks studied in literature range from optimally encoding
information [14] to throwing simulated darts at different
targets [15]. Yet, the only application to mobile robotics is
driving a remote-controlled car autonomously [12] and con-
ditioning on the direction it needs to turn at an intersection.
However, in the context of this work, it is more informative to

compare the works in terms of the architectures they leverage
to condition their networks. Figure 2 presents a summary of
the common approaches found in literature.

The conceptually simplest approach to conditioning neural
networks is shown in Fig. 2 (a) where the conditioning signal
ζ is simply appended to the policy observation o [16]. As
such approach is only possible with continuous scalar/vector
inputs, many works include an encoding network [9], [13],
[17]–[19], which generates a numeric representation of the
conditioning signal. Such encoders can be represented by
fully connected layers [17], transformers [9], recurrent neural
networks [8] for natural language conditioning signals, or
convolutional networks for image-based conditioning [13].

The multihead (b) and multipolicy (c) architectures shown
in Fig. 2 are very similar. In a multihead network all heads
operate on the same latent representation produced by a
shared encoder πshared. A subsequent multiplexer then selects
one of the heads based on the current task signal. This
architecture has been applied successfully to a real-world
remote-controlled car, which can either turn left, go straight,
or turn right at intersections based on the conditioning signal
ζ [12]. In this form the approach can only be applied
when the task-space is discrete and a head for each discrete
task-space class exists, e.g. three heads are required for a
controller that enables the car to go left, straight, right.
The multi-policy approach with a subsequent interpolation
layer presented in [15], [20] is very similar. However, no
shared encoder is used and the multiplexer is replaced by
an interpolation module. The latter enables this approach
to handle continuous task signals as the individual control
actions by the respective policies are combined smoothly.

A novel approach to conditioning a network that does
not require training separate heads nor performs naive in-
put feature concatenation presented in [8]. Their proposed
feature-wise linear modulation (FiLM) layer is illustrated in
Fig. 2 d). The idea is that a FiLM layer is inserted between
two layers of an existing network, effectively splitting the
original network into two parts π1 and π2. The activations
of the first part π1 are passed through the FiLM layer which
applies an affine transform with trainable parameters γ1 and
γ2. The transformed activations are then used as input to
π2 which generates the final control action. This architecture
was originally devised for transforming feature maps of con-
volutional neural networks [8] but has been applied to robotic
manipulation tasks [21], optimal information encoding, and
style transfer tasks [14]. As an extension, we also propose
an augmented FiLM architecture Fig. 2 e) which also feeds
the conditioning signal into the control policy directly.



III. METHODOLOGY

In this work we will compare and evaluate the different
architectures shown in Fig. 2 for the task of conditioning a
quadrotor control on user input. Focusing on the challenging
task of agile quadrotor flight, policies are trained using
model-free reinforcement learning and directly map a set of
observations ot to low-level control actions at [22]. This
section first presents a brief overview of the quadrotor sim-
ulator used for training, then proceeds to explain the neural
controller, and concludes by introducing the demonstrators
evaluated in this work.
A. Notation & Quadrotor Dynamics

Throughout this paper, scalars are denoted in non-
bold [s, S], vectors in lowercase bold v, and matrices in
uppercase bold M . World W and Body B frames are defined
with an orthonormal basis i.e. {xW ,yW , zW}. The frame B
is located at the center of mass of the quadrotor.

The quadrotor is assumed to be a 6 degree-of-freedom
rigid body of mass m and diagonal moment of inertia matrix
J = diag(Jx, Jy, Jz). Furthermore, the rotational speeds of
the four propellers Ωi are modeled as a first-order system
with time constant kmot where the commanded motor speeds
Ωcmd are the input. The state space is thus 17-dimensional
and its dynamics can be written as:

ẋ =
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where gW = [0, 0,−9.81ms−2]⊤ denotes earth’s gravity,
fprop, τprop are the collective force and the torque produced
by the propellers. To account for residual aerodynamic
effects, we introduce a lumped residual term fres, τres on
the forces and torques respectively.

Model-free reinforcement learning suffers from a low
sample-efficiency during training which necessitates an effi-
cient simulator that can run fast. Hence, to model the thrust
and torque produced by the i-th propeller, the commonly
used and computationally lightweight quadratic model [23]–
[25] is employed:

fi(Ω) =
[
0 0 cl Ω

2
]⊤

τi(Ω) =
[
0 0 cd Ω

2
]⊤

(2)

fprop =
∑
i

fi τprop =
∑
i

τi + rP,i × fi (3)

where cl, cd denote the lift and drag coefficient of propeller
respectively and rP. Compared to state-of-the-art methods
that leverage blade-element-momentum theory [26], this
quadratic model does not account for aerodynamic effects,
such as rotor drag or blade flapping. This deficiency widens
the sim-to-real gap when deploying the trained controller
in the real-world. To increase the simulation fidelity while
maintaining low computational complexity we use a polyno-
mial graybox model [26], [27] for the residual force fres and
torque τres term.

B. Neural Controller
In this work, the task of fast and agile quadrotor flight

is defined as navigating through a sequence of drone racing
gates as fast as possible. Or, to rephrase this using broader
terms: Navigate through a sequence of predefined waypoints
gi in minimum time and pass each waypoint within an
l∞ distance less then the dimension of a racing gate. To
accomplish this, the control policy directly maps an obser-
vation ot and a conditioning input ζt to an action (control
command) at. The control policies are trained using model-
free reinforcement learning (PPO [28]) purely in simulation.

1) Observation and Action Space: At each timestep t the
policy has access to an observation ot from the environment
which contains (i) the current robot state, (ii) the relative
position to the next waypoint to be passed, and (iii) the
current conditioning signal. Specifically, the state consists of
the vehicle position pWB, its velocity in body-frame vB and
its attitude. To avoid discontinuities the latter is represented
by a rotation matrix instead of directly using the quaternion
qWB [29]. The value network used during training time has
access to the same input features as the policy network. In
contrast to the policy network, the value network architecture
does not contain any FiLM layers.

The control command at consists of a desired collective
mass-normalized thrust c and a bodyrate setpoint ωB,ref.
Those commands are then tracked by a low-level controller,
which finally controls the motors. In contrast to more ab-
stract control modalities such as linear velocity references,
operating on collective thrust and bodyrates has been shown
to be well suited for agile learned quadrotor control [22].

2) Conditioning: We compare and evaluate different net-
work architectures (illustrated in Fig. 2) to condition a
neural controller for agile quadrotor flight. Specifically, the
following architectures are considered:

• Naive-c a naive baseline (see Fig. 2 a)) where continu-
ous scalar conditioning signal is concatenated with the
observation,

• Naive-d the same architecture as naive-c but with a
discretized one-hot vector encoding of the conditioning
signal,

• Multihead an architecture (see Fig. 2 b)) with a discrete
conditioning signal similar to [12],

• FiLM-c a standard FiLM architecture (see Fig. 2 d))
with a continuous scalar conditioning input,

• FiLM*-c our augmented FiLM architecture (see
Fig. 2 e)) with a continuous scalar conditioning input,

• FiLM*-d the same architecture as FiLM*-c but with a
discretized one-hot vector encoding of the conditioning
signal.

3) Reward Function: We use a dense shaped reward to
encode the task of high-speed flight through a set of pre-
defined waypoints. The reward rt at time step t is given by

rt =rprog
t + rperc

t (ζ)− rtwr
t (ζ)− rcrash

t , (4)

where rprog rewards progress towards the next gate to be
passed [5], rperc(ζ) encodes perception awareness by adjust-
ing the vehicle’s attitude such that the optical axis of its



Fig. 3. We evaluate neural policy conditioning on the task of autonomous drone racing. Different approaches for policy conditioning are evaluated on a
set of three different race tracks of varying complexity. All tracks are of similar size, spanning between 10 m and 16 m in width.

camera points towards the next gate’s center with an optional
user-specified offset, rtwr(ζ) is a penalty for violating the
user-specified maximum thrust-to-weight ratio, and rcrash is
a binary penalty that is only active when colliding with a
gate or when the platform leaves a pre-defined bounding box,
which also ends the episode.

Progress, perception, thrust-to-weight, and collision re-
ward components are formulated as follows:

rprog
t = λ1 (dGate(t− 1)− dGate(t))

rperc
t (ζ) = λ2 exp

(
λ3 · δcam(ζ)

4
)

(5)
rtwr
t (ζ) = max(λ4 exp (λ5(ccmd − ctwr(ζ)) / cmax)− 1, 0)

rcrash
t =

{
−5.0, if pz < 0 or in collision with gate.
0, otherwise

,

where dGate(t) denotes the distance from the quadrotor’s cen-
ter of mass to the center of the next gate, δcam(ζ) is the angle
between the optical axis of the camera and the user-specified
viewing direction (center of the next gate + offset angle).
The parameters ccmd, ctwr(ζ) and cmax are the commanded
mass normalized thrust, the current user-specified maximum
allowable mass normalized thrust and the maximum mass
normalized thrust physically available for the quadrotor,
respectively. The hyperparameters λ1, λ2, λ3, λ4, λ5 trade-
off objectives regarding perception awareness and thrust-to-
weight ratio constraints against progress objectives.

4) Policy Training: All control policies are trained using
Proximal Policy Optimization (PPO) [28]. PPO has been
shown to achieve state-of-the-art performance on a set of
continuous control tasks and is well suited for learning
problems where interaction with the environment is fast. Data
collection is performed by simulating 100 agents in parallel
using TensorFlow Agents [30]. At each environment reset,
every agent is initialized in a random gate on the track layout
with bounded perturbation around a state previously observed
when passing the respective gate.

IV. EXPERIMENTS

Using the training methodology described in the previ-
ous section, our experiments aim to answer the following
research questions: (i) Which of the architectures (Naive,
Multihead, FiLM, our augmented FiLM) presented in the
previous section (III-B.2) is best suited for conditioning
mobile robot control policies? (ii) Is it better to use a discrete
or continuous conditioning signal? (iii) What role does the
size of the network play? (iv) Do the results transfer to a
real-world quadrotor platform?

TABLE I
Physical parameters of the quadrotor.

Parameter Unit Value

Mass kg 0.807
Thrust N 36
TWR − 4.5
Inertia gm2 Ixx = 2.5, Iyy = 2.1, Izz = 4.3

A. Experimental Setup
As an example for a mobile robot, this work uses the agile

quadrotor platform shown in Fig. 1 with specifications listed
in Table I. The evaluated control policies are all trained for
the task of autonomous drone racing. In contrast to prior
work tackling autonomous racing, our experiments focus on
the racing performance when conditioned on a high-level
user input. The user inputs evaluated in this work include
(i) constraints on the maximum agility while racing and
(ii) a user-defined perception objective. While the former
conditioning signal aims at steering the aggressiveness of
the racing strategy and allows to trade off between speed and
safety, the latter enables to alter the robot’s heading direction
during flight, which could be used to focus perception on
salient landmarks on the track or keep an opponent in the
field of view during a race.

Our study is performed on the three track layouts shown in
Fig. 3 - a square track, a figure-8 track and a complex three-
dimensional track layout [4] called Split-S track, due to the
maneuver required to pass the double gate on the far right.
Throughout all experiments, performance is measured by
comparing the achieved laptimes and perception awareness
of the deployed policies. Perception awareness is quantified
by evaluating the average angular error between the desired
and observed camera viewing direction.

B. Choice of Network Architecture
In a first set of simulation experiments we aim at identify-

ing the best network architecture for efficient neural policy
conditioning in autonomous drone racing. To this end, we
focus on the most complex track layout Split-S and measure
the achieved laptime when conditioned on a maximum
agility level. Specifically, the policies for all architectures are
conditioned on the available thrust-to-weight ratio (TWR),
ranging from 1.6 TWR to 4.5 TWR. To have an estimate
of the lower bound of the laptime, we also train so-called
fixed-TWR policies. These policies are trained for a single
TWR setting, allowing them to overfit for a specific agility
level, which typically results in faster training progress and
superior performance.
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Architecture Avg. Rel. Laptime [%] Max. Rel. Laptime [%]

Naive-c 2.63 3.52
Naive-d 3.25 5.98
Multihead-d 3.23 4.23
FiLM-c 2.80 3.64
FiLM*-c 0.54 1.62
FiLM*-d 3.82 4.69

Fig. 4. All architectures are able to condition a quadrotor control policy for
agile flight on the maximum thrust-to-weight ratio. Our augmented FiLM*-
c architecture even manages to be within 0.6 % of a fixed-TWR baseline,
indicating that one does not have to trade-off control performance for the
added flexibility to regulate the controller during deployment. Furthermore,
the FiLM-based architectures cover the whole TWR-range and, unlike the
Naive baseline, do not crash at the lowest TWR setting.

Figure 4 shows the results of this experiment. The fixed-
speed reference is trained for and evaluated at 14 evenly
spaced points throughout the TWR interval [1.6, 4.5]. Each
of the conditioned policies are then evaluated at these thrust-
to-weight ratio setpoints. To reduce the stochasticity of the
results, each policy is the best of three identical policies
trained with different initial random weights.

All the architectures we evaluated result in control policies
that are able to race at a wide range of thrust-to-weight
ratios. However, upon a closer look one can see that the
FiLM*-c policy leveraging our augmented FiLM architecture
outperforms the other approaches in terms of laptime. More
importantly, the FiLM*-c is less than 0.6 % slower on average
than a set of specifically trained fixed-TWR policies. We
therefore gain the flexibility to regulate the neural controller
during deployment while paying almost no penalty in terms
of the optimality (i.e. laptime) of the control policy. Fur-
thermore, at the lowest thrust-to-weight setting of 1.6 TWR
only the policy trained with the FiLM-c and the FiLM*-c
architectures are able to race collision-free through the track.
All other policies do not complete a single lap as they crash
into the ground at some point. This further highlights the
superior versatility of the FiLM architecture, as it is able to
cover a wider range of conditioning inputs compared to the
other architectures. When comparing policies that operate
on continuous inputs to policies trained using a one-hot
encoding, we find that the continuous encoding outperforms
its discrete counterpart both for the FiLM architecture as well
as the naive architecture.

Based on the results presented above, we conclude that
the FiLM*-c framework outperforms the other approaches
and is extremely close to a fixed-TWR reference policy. We
thus use this architecture in all subsequent experiments.

TABLE II
Average relative laptimes of a FiLM*-c policy achieved when trained with

different sizes of the policy- and value-network.

Network Size Avg. Rel. Laptime [%] Max. Rel. Laptime [%]

64 5.14 13.26
128 2.09 4.97
256 2.22 3.2
512 3.87 4.76

C. Network Size
We ablate the impact of changes in the network size on the

performance of the FiLM*-c policy. Both the policy-network
and the value-network are implemented as two-layer MLPs
and we vary their sizes together, such that the value network
has four times wider layers. As in the previous experiments,
all trained policies are conditioned on a maximum thrust-to-
weight ratio while racing through the Split-S track layout.

Consistent with the previous experiments, all policies are
trained on a thrust-to-weight ratio interval of 1.6 to 4.5
for a fixed number of environment interactions. For each
setting, three policies are trained to reduce the variance and
all numbers are averages across those three policies. Table II
shows the average relative laptimes achieved by a FiLM*-
c controller with the different network sizes. One can see
that a too small network is not expressive enough while
larger network sizes become increasingly difficult to train
in an RL-setting, indicated by the increased laptime. Based
on these results, we chose a FiLM*-c architecture where the
policy/value network have 128/512 neurons per layer.

D. Different Track Layouts
After discussing the choice of network architecture, we

now study how the selected architecture performs on the
different track layouts introduced above (see Fig. 3). We
again consider the task of conditioning the policy on the
maximally available thrust-to-weight ratio and summarize
the results in Table III. The results obtained for the Split-
S and the Figure-8 track are very similar and verify that the
FiLM*-c architecture works on a variety of track layouts.
On the Square track, we obtain a surprising result: the
FiLM*-c architecture consistently outperforms the fixed-
TWR reference. This result indicates that the policy is able
to combine experience gained at different TWR settings and
finds a general policy that is strictly better in terms of laptime
than the individually trained fixed-TWR policies.

E. Real-World Experiments
The ablation studies presented in the previous sections

were all conducted in simulation. In this section we present
the transferability of our approach to real-world experiments
conducted on an agile quadrotor platform. The platform used
for these experiments is shown in 1 and it matches our
simulated quadrotor in specifications (see I). We encourage

TABLE III
Comparison of the fixed of relative laptimes (w.r.t fixed-TWR reference)

Avg. Rel. Laptime [%] Max. Rel. Laptime [%]

Square Track -4.60 -3.39
Figure-8 Track 0.50 3.14
Split-S Track 0.54 1.62
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Fig. 5. The plot and table compare the laptimes achieved by the Naive-
c and FiLM*-c approach in real-world experiments on the Split-S track.
Similar to the simulation results, the FiLM*-c architecture outperforms the
naive baseline.
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4.50 2.93 3.22
3.60 3.10 3.26
2.70 3.50 3.27
1.80 4.59 4.31
1.45 5.44 –
1.13 6.52 –

Fig. 6. The plot and table compare for each track how a FiLM*-c policy
performs in terms of achieved speeds and laptime. Especially on the Figure-
8 track the policy manages to fly the quadrotor with as little thrust margin
(w.r.t hover) as 13% up to 350%.

the reader to watch the supplementary video to understand
the dynamic nature of these experiments.

In a first set of experiments we repeat a subset of the
experiments presented in IV-B and compare the FiLM*-c
architecture with both fixed thrust-to-weight ratio policies
and the Naive-c network (see Fig. 5). Similar to what we
observed in simulation, the conditioning with the FiLM*-c
works well and it outperforms the naive baseline in terms of
laptime while being within 2 % of the fixed-TWR reference.

We also evaluate the chosen FiLM*-c conditioning ap-
proach on the two other tracks and show the flown tra-
jectories for various user-defined thrust-to-weight ratios in
Fig. 6. On the simple Figure-8 track, the FiLM*-c policy can
handle thrust-to-weight ratios as low as 1.13. The two plots
in Fig. 6 illustrate the observed speeds. From the speed-plots
one can also intuitively understand why the conditioning
approach is very successful: when the speed is plotted over
the lap-progress the curves for all speed levels exhibit very
similar features. Thus the implicit assumption behind the
FiLM framework—that the tasks are similar and related via
some continuous transformation—holds.
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Fig. 7. The FiLM*-c architecture also generalizes to the task of condition-
ing a policy on the viewing direction (Split-S track). A policy that is only
trained for the single task to look at the next waypoint (Single) performs
much worse than a policy that can be conditioned on the desired viewing
offset (FiLM*-c). This results holds both in simulation (sim) and real-world
experiments (RW).

F. Viewing Direction
To demonstrate the generalizability of our proposed

method, we extend the experimental evaluation with an
additional demonstrator for policy conditioning: perception.
Specifically, we condition the viewing direction of the
quadrotor while racing through the same track layouts as
in the previous experiments. The ability to actively control
perception is extremely useful for a vision-based robot, as
it allows to maintain visibility with visual landmarks and
as a result can substantially improve performance of state
estimation. We analyze conditioning on the viewing direction
both in simulation and on a real-world robot. To this end,
we task the quadrotor to race through the Split-S track, while
maintaining a user-specified heading direction relative to the
next gate to be passed.

Fig. 7 shows the results of this experiment. Both in sim-
ulation and the real world, the proposed FiLM*-c approach
maintains low heading errors over the entire spectrum of de-
sired viewing directions. In contrast, policies that are trained
for a single heading direction can not react to such user
input and exhibit large errors for desired viewing directions
different from zero.

V. CONCLUSION

This work presented a method to condition learning-based
control policies for agile quadrotor flight on an auxiliary in-
put. We evaluated different network architectures that process
such user input through simple concatenation, multiple action
heads, or by leveraging FiLM layers on the intermediate
activations. In an extensive ablation study, in simulation
we compared the individual approaches by conditioning
control policies on the maximally available thrust-to-weight
ratio. Our augmented FiLM architecture achieved the best
performance and is less than 0.6 % (in simulation) or 2 %
(in the real world) slower than a set of policies trained
specifically for one thrust-to-weight ratio. When conditioning
on the viewing direction offset w.r.t to the next landmark,
there was no visible difference in laptime. These findings
implicate that we gain the additional flexibility to regulate a
neural network controller and do not have to trade-off control
performance. Therefore, we believe that this work is an
important step in making neural controllers more accessible
and safe to deploy for mobile robots.
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R. Douglas, D. Whitehead, P. Dürr, P. Stone, M. Spranger, and
H. Kitano, “Outracing champion gran turismo drivers with deep
reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228,
2022.

[7] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, pp. 1–17, 2022.

[8] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[9] O. Mees, L. Hermann, and W. Burgard, “What matters in language
conditioned robotic imitation learning over unstructured data,” IEEE
Robotics and Automation Letters (RA-L), vol. 7, no. 4, pp. 11205–
11212, 2022.

[10] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” RSS: Robotics, Science, and Systems, 2021.

[11] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
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