
Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 1

Agilicious: Open-Source and Open-Hardware Agile Quadrotor
for Vision-Based Flight
PHILIPP FOEHN†,*, ELIA KAUFMANN†,*, ANGEL ROMERO , ROBERT PENICKA , SIHAO SUN , LEONARD
BAUERSFELD , THOMAS LAENGLE , GIOVANNI CIOFFI , YUNLONG SONG , ANTONIO LOQUERCIO , AND
DAVIDE SCARAMUZZA

All authors are with the Robotics and Perception Group, UZH, Zurich, Switzerland.
†These authors contributed equally to this work.
*Corresponding authors: foehn@ifi.uzh.ch, ekaufmann@ifi.uzh.ch

This is the accepted version of Science Robotics Vol. 7, Issue 67
DOI: 10.1126/scirobotics.abl6259 (2022)

Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception,
planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let
practitioners focus on the core problems. To this end, we present Agilicious, a co-designed hardware and software
framework tailored to autonomous, agile quadrotor flight. It is completely open-source and open-hardware and
supports both model-based and neural-network–based controllers. Also, it provides high thrust-to-weight and
torque-to-inertia ratios for agility, onboard vision sensors, GPU-accelerated compute hardware for real-time
perception and neural-network inference, a real-time flight controller, and a versatile software stack. In contrast
to existing frameworks, Agilicious offers a unique combination of flexible software stack and high-performance
hardware. We compare Agilicious with prior works and demonstrate it on different agile tasks, using both
model-based and neural-network–based controllers. Our demonstrators include trajectory tracking at up to
5 g and 70 km/h in a motion-capture system, and vision-based acrobatic flight and obstacle avoidance in both
structured and unstructured environments using solely onboard perception. Finally, we demonstrate its use
for hardware-in-the-loop simulation in virtual-reality environments. Thanks to its versatility, we believe that
Agilicious supports the next generation of scientific and industrial quadrotor research.

CODE AND MULTIMEDIA MATERIAL

Code and data can be found at https://agilicious.dev. A video of the
experiments can be found at https://youtu.be/fNYxPLyJ5YY.

1. INTRODUCTION

Quadrotors are extremely agile vehicles. Exploiting their agility in
combination with full autonomy is crucial for time-critical missions,
such as search and rescue, aerial delivery, and even flying cars. For this
reason, over the past decade, research on autonomous, agile quadrotor
flight has continually pushed platforms to higher levels of speed and
agility [1–10].

To further advance the field, several competitions have been
organized—such as the autonomous drone racing series at the recent
IROS and NeurIPS conferences [3, 11–13] and the AlphaPilot chal-
lenge [6, 14]—with the goal to develop autonomous systems that will
eventually outperform expert human pilots. Million-dollar projects,
such as AgileFlight [15] and Fast Lightweight Autonomy (FLA) [4],
have also been funded by the European Research Council and the
United States government, respectively, to further push research. Agile
flight comes with ever-increasing engineering challenges since per-
forming faster maneuvers with an autonomous system requires more
capable algorithms, specialized hardware, and proficiency in system

integration. As a result, only a small number of research groups have
undertaken the significant overhead of hardware and software engineer-
ing, and have developed the expertise and resources to design quadrotor
platforms that fulfill the requirements on weight, sensing, and compu-
tational budget necessary for autonomous agile flight. This work aims
to bridge this gap through an open-source agile flight platform, en-
abling everyone to work on agile autonomy with minimal engineering
overhead.

The platforms and software stacks developed by research groups [2,
4, 16–21] vary strongly in their choice of hardware and software tools.
This is expected, as optimizing a robot with respect to different tasks
based on individual experience in a closed-source research environ-
ment leads to a fragmentation of the research community. For example,
even though many research groups use the Robot Operating System
middleware to accelerate development, publications are often diffi-
cult to reproduce or verify since they build on a plethora of previous
implementations of the authoring research group. In the worst case,
building on an imperfect or even faulty closed-source foundation can
lead to wrong or non-reproducible conclusions, slowing down research
progress. To break this vicious cycle and to democratize research on
fast autonomous flight, the robotics community needs an open-source
and open-hardware quadrotor platform that provides the versatility and
performance needed for a wide range of agile flight tasks. Such an

https://agilicious.dev
https://youtu.be/fNYxPLyJ5YY


Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 2

open and agile platform does not yet exist, which is why we present
Agilicious, an open-source and open-hardware agile quadrotor flight
stack summarized in Figure 1.

To reach the goal of creating an agile, autonomous, and versatile
quadrotor research platform, two main design requirements must be
met by the quadrotor: it must carry the required compute hardware
needed for autonomous operation, and it must be capable of agile flight.

To meet the first requirement on computing resources needed for
true autonomy, a quadrotor should carry sufficient compute capability
to concurrently run estimation, planning, and control algorithms on-
board. With the emergence of learning-based methods, also efficient
hardware acceleration for neural network inference is required. To en-
able agile flight, the platform must deliver an adequate thrust-to-weight
ratio and torque-to-inertia ratio. While the thrust-to-weight ratio can
often be enhanced using more powerful motors, which in turn require
larger propellers and thus a larger size of the platform. However, the
torque-to-inertia ratio typically decreases with higher weight and size,
since the moment of inertia increases quadratic with the size, and lin-
early with the weight. As a result, it is desirable to design a lightweight
and small platform [25, 26] to maximize agility (i.e. maximize both
thrust-to-weight and torque-to-inertia). Therefore the platform should
meet the best trade-off, since maximizing compute resources competes
against maximizing the flight performance.

Apart from hardware design considerations, a quadrotor research
platform needs to provide the software framework for flexible usage
and reproducible research. This entails the abstraction of hardware
interfaces and a general co-design of software and hardware necessary
to exploit the platform’s full potential. Such co-design must account for
the capabilities and limitations of each system component, such as the
complementary real-time capabilities of common operating systems
and embedded systems, communication latencies and bandwidths, sys-
tem dynamics bandwidth limitations, and efficient usage of hardware
accelerators. In addition to optimally using hardware resources, the
software should be built in a modular fashion to enable rapid proto-
typing through a simple exchange of components, both in simulation
and real-world applications. This modularity enables researchers to
test and experiment with their research code, without the requirement
to develop an entire flight stack, accelerating time to development
and facilitating reproducibility of results. Finally, the software stack
should run on a broad set of computing boards, be efficient, easy to
transfer and adapt by having minimal dependencies and provide known
interfaces, such as the widely-used Robot Operating System (ROS).

The complex set of constraints and design objectives is difficult
to meet. There exists a variety of previously published open-source
research platforms, which, while well designed for low-agility tasks,
could only satisfy a subset of the aforementioned hardware and soft-
ware constraints. In the following section, we list and analyze promi-
nent examples such as the FLA platform [4], the MRS quadrotor [20],
the ASL-Flight [17], the MIT-Quad [27], the GRASP-Quad [2], or our
previous work [18].

The FLA platform [4] relies on many sensors, including Lidars and
laser-range finders in conjunction with a powerful onboard computer.
While this platform can easily meet autonomous flight computation
and sensing requirements, it does not allow to perform agile flight
beyond 2.4g of thrust, limiting the flight envelope to near-hover flight.
The MRS platform [20] provides an accompanying software stack
and features a variety of sensors. Even though this hardware and
software solution allows fully autonomous flight, the actuation renders
the system not agile with a maximum thrust-to-weight of 2.5. The ASL-
Flight [17] is built on the DJI Matrice 100 platform and features an Intel
NUC as the main compute resource. Similarly to the MRS platform, the
ASL-Flight has very limited agility due to its weight being on the edge
of the platform’s takeoff capability. The comparably smaller GRASP-

Quad proposed in [2] operates with only onboard inertial measurement
unit (IMU) and monocular camera while having a weight of only
250 g. Nevertheless, the Qualcomm Snapdragon board installed on this
platform lacks computational power and also the actuation constrains
the maximal accelerations below 1.5g. Motivated by drone racing, the
MIT-Quad [27] reported accelerations of up to 2.1g while it was further
equipped with NVIDIA Jetson TX2 in [28], however, it does not reach
the agility of Agilicious and contains proprietary electronics. Finally,
the quadrotor proposed in [18] is a research platform designed explicitly
for agile flight. Although the quadrotor featured a high thrust-to-weight
ratio of up to 4, its compute resources are very limited, prohibiting truly
autonomous operation. All these platforms are optimized for either
relatively heavy sensor setups or for agile flight in non-autonomous
settings. While the former platforms lack the required actuation power
to push the state of the art in autonomous agile flight, the latter have
insufficient compute resources to achieve true autonomy.

Finally, several mentioned platforms rely on either Pixhawk-
PX4 [29], the Parrot [30] or DJI [31] low-level controllers, which
are mostly treated as blackboxes. This, together with the proprietary
nature of the DJI systems, limits control over the low-level flight char-
acteristics, which not only limits interpretability of results, but also
negatively impacts agility. Full control over the complete pipeline is
necessary to truly understand aerodynamic and high-frequency effects,
model and control them, and exploit the platform to its full potential.

Apart from platforms mainly developed by research labs, several
quadrotor designs are proposed by industry (Skydio [32], DJI [31],
Parrot [30]) and open-source projects (PX4 [29], Paparazzi [21],
Crazyflie [33]). While Skydio [32] and DJI [31] both develop platforms
featuring a high level of autonomy, they do not support interfacing with
custom code and therefore are of limited value for research and devel-
opment purposes. Parrot [30] provides a set of quadrotor platforms
tailored for inspection and surveillance tasks that are accompanied
by limited software development kits that allow researchers to pro-
gram custom flight missions. In contrast, PX4 [29] provides an entire
ecosystem of open-source software and hardware as well as simulation.
While these features are extremely valuable especially for low-speed
flight, both cross-platform hardware and software are not suited to
push the quadrotor to agile maneuvers. Similarly, Paparazzi [21] is an
open-source project for drones, which supports various hardware plat-
forms. However, the supported autopilots have very limited onboard
compute capability, rendering them unsuited for agile autonomous
flight. The Crazyflie [33] is an extremely lightweight quadrotor plat-
form with a takeoff weight of only 27 g. The minimal hardware setup
leaves no margin for additional sensing or computation, prohibiting
any non-trivial navigation task.

To address the requirements of agile flight, the shortcomings of
existing works, and to enable the research community to progress fast
towards agile flight, we present an open-source and open-hardware
quadrotor platform for agile flight at more than 5g acceleration while
providing substantial onboard compute and versatile software. The
hardware design leverages recent advances in motor, battery, and frame
design initiated by the first-person-view (FPV) racing community. The
design objectives resulted in creating a lightweight 750 g platform with
maximal speed of 131 km/h. This high-performance drone hardware
is combined with a powerful onboard computer that features an inte-
grated GPU, enabling complex neural network architectures to run at
high frequency while concurrently running optimization-based control
algorithms at low latency onboard the drone. The most important fea-
tures of the Agilicious framework are summarized and compared with
relevant research and industrial platforms in Figure 2. A qualitative
comparison of mutually contradicting onboard computational power
and agility is presented in Figure 2.



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 3

Simulation

Rigid Body
Dynamics

BEMModel

Motor Model

Low Level
Controller

state

RealWorld

Quadrotor

Low Level
Controller

state

5" Propeller

Brushless Motor

Carbon Fiber Frame

Nut

Vision Sensor

4S LiPo Battery

Quasar Carrier Board

3D-printed Sensor Mount
Hobbywing ESC

Damper

Radix Flight Controller

3D-printed Battery Mount

3D-printed Jetson Mount Jetson TX2

Pipeline

state setpoint command
Estimator Sampler BridgeController

Logic

WaypointTrajectory Velocity Body Rates + Thrust Rotor Thrusts

User select Reference

OffHoverLandStart

Action User select

Agilicious Pilot

Fig. 1. The Agilicious software and hardware quadrotor platform are tailored for agile flight while featuring powerful onboard compute ca-
pabilities through an NVIDIA Jetson TX2. The versatile sensor mount allows for rapid prototyping with a wide set of monocular or stereo
camera sensors. As a key feature, the software of Agilicious is built in a modular fashion, allowing rapid software prototyping in simulation and
seamless transition to real-world experiments. The Agilicious Pilot encapsulates all logic required for agile flight, while exposing a rich set of
interfaces to the user, from high-level pose commands to direct motor commands. The software stack can be used in conjunction with a custom
modular simulator which supports highly accurate aerodynamics based on blade-element momentum theory [22], or with RotorS [23], hardware-
in-the-loop, and rendering engines such as Flightmare [24]. Deployment on the physical platform only requires selecting a different bridge and a
sensor-compatible estimator.

In co-design with the hardware, we complete the drone design with
a modular and versatile software stack, called Agilicious. It provides
a software architecture that allows to easily transfer algorithms from
prototyping in simulation to real-world deployment in instrumented
experiment setups, and even pure onboard-sensing applications in
unknown and unstructured environments.

This modularity is key for fast development and high-quality re-
search, since it allows to quickly substitute existing components with
new prototypes and enables all software components to be used in
standalone testing applications, experiments, benchmarks, or even
completely different applications.

The hardware and software presented in this work have been de-
veloped, tested, and refined throughout a series of research publica-
tions [3, 9, 10, 34–38]. All these publications share the ambition to
push autonomous drones to their physical limits. The experiments,
performed in a diverse set of environments demonstrate the versatility
of Agilicious by deploying different estimation, control, and planning
strategies on a single physical platform. The flexibility to easily com-
bine and replace both hard- and software components in the flight
stack while operating on a standardized platform facilitates testing new
algorithms and accelerates research on fast autonomous flight.

2. RESULTS

Our experiments, conducted in simulation and in the real world, demon-
strate that Agilicious can be used to perform cutting-edge research in
the fields of agile quadrotor control, quadrotor trajectory planning,
and learning-based quadrotor research. We evaluate the capabilities
of the Agilicious software and hardware stack in a large set of experi-
ments that investigate trajectory tracking performance, latency of the
pipeline, combinations of Agilicious with a set of commercially or
openly available vision-based state estimators. Finally, we present two
demonstrators of recent research projects that build on Agilicious.

A. Trajectory Tracking Performance
In this section, we demonstrate the tracking performance of our plat-
form by flying an aggressive time-optimal trajectory in a drone racing
scenario. Additionally, to benchmark our planning and control algo-
rithms, we compete against a world-class drone racing pilot FPV pilot,
reported in [10]. As illustrated in Figure 3, our drone racing track
consists of seven gates that need to be traversed in a pre-defined order
as fast as possible. The trajectory used for this evaluation reaches
speeds of 60km/h and accelerations of 4 g.

Flying through gates at such high speed requires precise state es-
timates, which is still an open challenge using vision-based state es-



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 4

Future Research

Onboard Compute Capability

A
gi
lit
y

OursDJI

Crazyflie

Parrot

Skydio

MIT

GRASP

FLA

ASL

Research Platform / Open

Proprietary Platform / Closed

MRS

framework open-source simulation
onboard
computer

low-level
controller

CPU mark
(higher is better) GPU

maximum speed
(0-100 km/h time)

thrust/weight

PX4 [29] SW and HW ✓ ✗ custom open source - ✗ - -
Paparazzi [21] SW and HW ✓ ✗ custom open source - ✗ - -

DJI [31] - ✗ ✗ proprietary - ✗ 140 km/h (2.0 s) ≈ 4.434
Skydio [32] - ✗ ✗ proprietary - ✗ 58 km/h -
Parrot [30] SW ✗ ✗ proprietary - ✗ 55 km/h -
Crazyflie [33] SW and HW ✓ ✗ custom open source - ✗ - ≈ 2.26
FLA-Quad [4] SW and HW ✗ ✓ PX4 3,383 ✗ - ≈ 2.38
GRASP-Quad [2] - ✗ ✓ custom 625 ✗ - ≈ 1.80
MIT-Quad [28] - ✗ ✓ custom 1,343 ✓ - ≈ 2.33
ASL-Flight [17] SW and HW ✗ ✓ DJI 3,383 ✗ - ≈ 2.32
RPG-Quad [18] SW and HW ✓ ✓ Betaflight 633 ✗ - ≈ 4.00
MRS UAV [20] SW and HW ✓ ✓ PX4 8,846 ✗ - ≈ 2.50

Agilicious (Ours) SW and HW ✓ ✓ custom open source 1,343 ✓ 131 km/h (1.01 s) ≈ 5.00

Fig. 2. A comparison of different available consumer and research platforms with respect to available onboard compute capability and agility.
The platforms are compared based on their openness to the community, support of simulation and onboard computation, used low-level con-
troller, CPU power (reported according to publicly available benchmarks https://www.cpubenchmark.net and corresponding to the speed of solving
a set of benchmark algorithms that represent a generic program), and the availability of onboard general-purpose GPU. The agility of the plat-
forms is expressed in the terms of thrust-to-weight ratio; however, we also report the maximal velocity as an agility indicator due to limited
information about the commercial platforms. The PX4 [29] and the Paparazzi [21] are rather low-level autopilot frameworks without high-level
computation capability, but they can be integrated in other high-level frameworks [4, 20]. The open-source frameworks FLA [4], ASL[17], and
MRS [20] have relatively large weight and low agility. The DJI [31], Skydio [32], and Parrot [30] are closed-source commercial products that
are not intended for research purposes. The Crazyflie [33] does not allow for sufficient onboard compute or sensing, while the MIT [28] and
GRASP [2] platforms are not available open-source. Finally, our proposed Agilicious framework provides agile flight performance, onboard
GPU-accelerated compute capabilities, as well as open-source and open-hardware availability.

timators [39]. For this reason, we conduct these experiments in an
instrumented flight volume of 30 × 30 × 8 m (7200 m3), equipped
with 36 VICON cameras that provide precise pose measurements at
400 Hz. However, even when provided with precise state estimation,
accurately tracking such aggressive trajectories poses considerable
challenges with respect to the controller design, which usually requires
several iterations of algorithm development and substantial tuning ef-
fort. The proposed Agilicious flight stack allows us to easily design,
test, and deploy different control methods by first verifying them in
simulation and then fine-tuning them in the real-world. The transition

from simulation to real-world deployment requires no source-code
changes or adaptions, which reduces the risk of crashing expensive
hardware, and is one of the major features of Agilicious accelerating
rapid-prototyping. Figure 3 includes a simulated flight that shows
similar characteristics and error statistics compared to the real-world
flights described next.

We evaluate three different system and control approaches includ-
ing onboard computation with an off-the-shelf BetaFlight [40] flight
controller, our custom open-source agiNuttx controller, and an offboard-
control scenario. These three system configurations represent various

https://www.cpubenchmark.net


Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 5

0 1 2 3 4 5 6 7
Time [s]

0

0.2

0.4

0.6

Tr
ac
ki
ng

Er
ro
r[
m
]

agiNuttx Betaflight Betaflight +Laird
30

50

70

D
el
ay
[m
s]

0

2

-5

Z
[m
]

4

5
0

Y [m]X [m]

0
5

-510

SimulationBetaflightagiNuttxReference Betaflight + Laird

A B

C

Fig. 3. An agile trajectory with speeds up to 60km/h and an acceleration of 4g, executed in an indoor instrumented flight volume. We compare
multiple different drone configurations, including our own low-level flight controller software agiNuttx, an off-the-shelf BetaFlight controller,
the BetaFlight controller together with offboard computing and remote control through a Laird wireless transmitter, and our included simulation.
Figure A depicts an overview of the flown trajectory. Figure B shows the tracking errors along a single lap over all three configurations. Our
provided agiNuttx achieves the best tracking performance, followed by BetaFlight combined with onboard computation. In contrast, offload-
ing computation from the drone and controlling it remotely significantly impacts performance. This is due to the massively increased latency,
depicted in Figure C, where, for reference, the motor time constant of 39.1ms is marked as a dashed line (- - -). Additionally, in Figure B it is
visible that the simulation exhibits very similar error characteristics, thanks to our accurate aerodynamic modelling.

use cases of Agilicious, such as running state-of-the-art single-rotor
control onboard the drone using our agiNuttx described in Sec. B, or
simple remote control by executing Agilicious on a desktop computer
and forwarding the commands to the drone. All configurations use the
motion capture state estimate and our single-rotor model-predictive
control (MPC) described in Section D.1 [41] as high-level controller.
We use the single-rotor thrust formulation to correctly account for
actuation limits, but use bodyrates and collective thrust as command
modality.

The first configuration runs completely onboard the drone with an
additional low-level controller in the form of incremental non-linear
dynamic inversion (INDI) as described in Section D.1 [41]. It uses the
MPC’s output to compute refined single-rotor thrust commands using
INDI, to reduce the sensitivity to model inaccuracies. These single-
rotor commands are executed using our agiNuttx flight controller with
closed-loop motor speed tracking.

The second configuration also runs onboard and directly forwards
the bodyrate and collective thrust command from the MPC to a
BetaFlight [40] controller. This represents the most simplistic system
which does not require flashing the flight controller and is compatible
with a wide range of readily available off-the-shelf hobbyist drone
components. However, in this configuration, the user does not get any
IMU or motor speed feedback, as those are not streamed by BetaFlight.

The third configuration is equal to the second configuration with the
difference that the Agilicious flight stack runs offboard on a desktop or
laptop computer. The bodyrate and collective thrust commands from
the MPC are streamed to the drone using a serial wireless link imple-
mented through LAIRD [42]. This configuration allows to run com-
putationally demanding algorithms, such as GPU-accelerated neural
networks, with minimal modifications. However, due to the additional
wireless command transmission, there is a higher latency which can
potentially degrade the control performance.

Finally, the Agilicious simulation is executed using the same setup
as the first configuration. It uses accurate models for the quadrotor
and motor dynamics, as well as a blade-element momentum theory
aerodynamic model as described in [22].

Figure 3A,B depict the results of these trajectory tracking experi-
ments. Our first proposed configuration (i.e. with onboard computation
and the custom agiNuttx flight controller) achieves the best overall
tracking performance with the lowest average positional root-mean-
square error (RMSE) of just 0.322m at up to 60 km/h and 4 g. Next
up is the second configuration with BetaFlight, still achieving less
than 0.385m average positional RMSE. Finally, the third configuration
with offboard control exhibits higher latency, leading to an increased
average positional RMSE of 0.474m. As can be seen, our simulation
closely matches the performance observed in real world in the first
configuration. The simulated tracking results in slightly lower errors,
0.320m RMSE, since even the state-of-the-art aerodynamic models
[22] fail to reproduce the highly non-linear and chaotic real aerody-
namics. This simulation accuracy allows a seamless transition from
simulation prototyping to real-world verification, and is one of the
prominent advantages of Agilicious.

Additional experiments motivating the choice of MPC as outer-loop
controller and its combination with INDI can be found in [41], details
on the planning of the time-optimal reference trajectory are elaborated
on in [10], and additional extensions to the provided MPC for fast
flight are in [45] and for rotor-failure MPC in [46]. These related
publications also showcase performance at even higher speeds of up to
70 km/h and accelerations reaching 5 g. The following section gives
further insights into the latency of the three configurations tested herein,
including on- and offboard control architecture, as well as BetaFlight
and agiNuttx flight controllers.

B. Control Latency

All real systems with finite resources suffer from communication and
computation delays, while dynamic systems and even filters can in-
troduce additional latency and bandwidth limitations. Analyzing and
minimizing these delays is fundamental for the performance in any
control task, especially when tracking agile and fast trajectories in the
presence of model mismatch, disturbances and actuator limitations. In
this section we conduct a series of experiments that aim to analyse
and determine the control latency, from command to actuation, of the



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 6

-2 0 2 4
x [m]

4

2

0

2

4
y
[m

]

RealSense

Positional RMSE

Circle

Circle

Lemniscate

Lemniscate

SVO

Groundtruth

0.151 m

0.217 m

0.114 m

0.131 m

-2 0 2 4 6 8
x [m]

2

1

0

1

2

y
[m

]

Average Tracking Error

Fig. 4. A comparison of two different visual-inertial odometry solutions. The first solution consists of the Intel RealSense T265, an off-the-
shelf sensor featuring a stereo camera, an IMU, and an integrated visual-inertial odometry (VIO) pipeline running on the integrated compute
hardware. The second solution consists of a monocular camera, the IMU of the onboard flight controller, and SVO [43]. The estimates of both
solutions are compared against motion-capture ground truth using [44] on a circle and a Lemniscate trajectory, flown using Agilicious in an
indoor environment. Both systems show accurate tracking performance and could be used as cost-effective drop-in replacement for motion
capture systems and enable deployment in the wild. While the Intel RealSense T265 is a convenient off-the-shelf option, using other cameras
in combination with the onboard flight controller IMU and an open-source or custom visual-inertial odometry (VIO) pipeline enables tailored
solutions and research-oriented data access.

proposed architecture for the three different choices of low level con-
figurations: our agiNuttx, BetaFlight, and BetaFlight with offboard
control.

For this experiment, the quadrotor has been mounted on a load cell
(ATI Mini 40 SI-20-1 [47]) measuring the force and moment acting
on the platform. To measure the latency, a collective thrust step com-
mand of 12N is sent to the corresponding low level controller, while
measuring the exerted force on the drone. These force sensor measure-
ments are time-synchronized with the collective thrust commands, and
fitted through a first-order system representing to motor dynamics. The
measured delays are reported in Figure 3C as the difference between
the time at which the high level controller sends the collective thrust
command, and the time at which the measured force effectively starts
changing. The results show that both agiNuttx has the lowest latency at
35ms, with BetaFlight slightly slower at 40.15 ms. A large delay can
be observed when using offboard control and sending the commands
via Laird connection to the drone, in which case the latency rises to
more than 75ms. The impact of these latencies is also reflected in the
tracking error in Figure 3A,B. To put the measured delays into perspec-
tive, the motor’s time constant of 39.1ms, which dictates the actuator
bandwidth limitations, is indicated in Figure 3C. Finally, Section D.1
gives some insight into the latencies introduced when using Agilicious
together with Flightmare [24] in a hardware-in-the-loop setup.

C. Visual-Inertial State Estimation
Deploying agile quadrotors outside of instrumented environments re-
quires access to onboard state estimation. There exist many different
approaches including GPS, lidar, and vision-based solutions. However,
for size and weight constrained aerial vehicles, visual-inertial odometry
has proven to be the go-to solution because of the sensors’ comple-
mentary measurement modalities, low cost, mechanical simplicity, and
reusability for other purposes, such as depth estimation for obstacle
avoidance.

The Agilicious platform provides a versatile sensor mount that is
compatible with different sensors and can be easily adapted to fit cus-
tom sensor setups. In this work, two different visual-inertial odometry
(VIO) solutions are evaluated: (i) the proprietary, off-the-shelf Intel Re-

alSense T265 and (ii) a simple camera together with the onboard flight
controller IMU and an open-source VIO pipeline in the form of SVO
Pro [43, 48] with its sliding-window backend. While the RealSense
T265 performs all computation on-chip and directly provides a state
estimate via USB3.0, the alternative VIO solution uses the Jetson TX2
to run the VIO software and allows researchers to interface and modify
the state estimation software. Specifically, for sensor setup (ii), a single
Sony IMX-287 camera at 30Hz with a 165° diagonal field-of-view is
used, combined with the IMU measurements of the flight controller at
500Hz, calibrated using the Kalibr toolbox [49].

To verify their usability, a direct comparison of both VIO solutions
with respect to ground-truth is provided. Performance is evaluated
based on the estimation error [44] obtained on two trajectories flown
with Agilicious. The flown trajectories consist of a circle trajectory
with radius of 4m at a speed of 5m/s, and a Lemniscate trajectory
with an amplitude of 5m at a speed of up to 7m/s.

Figure 4 shows the performance of both VIO solutions in an xy-
overview of the trajectories together with their absolute tracking error
(ATE) RMSE. Both approaches perform well on both trajectories, with
the Intel RealSense achieving slightly better accuracy according to the
ATE of 0.151m on the circle and 0.114m on the Lemniscate, compared
to the monocular SVO approach with 0.217m and 0.131m, respectively.
This is expected since the Intel RealSense uses a stereo camera plus
IMU setup and is a fully integrated solution, while sensor setup (ii)
aims at minimal cost by only adding a single camera and otherwise
exploiting the existing flight-controller IMU and onboard compute
resources.

However, at the timing of writing this manuscript, the Intel Re-
alSense T265 is being discontinued. Other possible solutions include
camera sensors such as SevenSense [50], MYNT EYE [51], or Ma-
trixVision [52], and other stand-alone cameras, combined with software
frameworks like ArtiSense [53], SlamCore [54], or open-source frame-
works like VINSmono [55], OpenVINS [56], or SVO Pro [43, 48],
evaluated in [57]. Furthermore, there are other fully integrated alterna-
tives to the Intel RealSense [58], including the Roboception [59] and
the ModalAI Voxl CAM [60].



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 7

RealWorld Simulation

RealWorld Simulation Algorithms

Photorealistic Environments
Sensors (Camera, Depth Sensor, Optical Flow)

Physical Platform
Vicon Motion Capture (with mm Precision)

Quadrotor Position and Attitude Simulated Sensor Data

Vision-based Navigation
Machine Learning

A

0

10

20

100x100

Render Delay for HIL Simulation

Resolution [px]
640x480 1920x1080

5

15

25

30

D
el
ay

[m
s]

Fig. 5. A: The hardware-in-the-loop simulation of Agilicious consists of a real quadrotor flying in a motion capture system combined with
photorealistic simulation of complex 3D environments. Multiple sensors can be simulated with minimal delays while virtually flying in various
simulated scenes. Such hardware-in-the-loop simulation offers a modular framework for prototyping robust vision-based algorithms safely,
efficiently, and inexpensively. B-G: The Agilicious platform is deployed in a diverse set of environments while only relying on onboard sensing
and computation. B-D: The quadrotor performs a set of acrobatic maneuvers using a learned control policy. E-G: By leveraging zero-shot sim-to-
real transfer, the quadrotor platform performs agile navigation through cluttered environments. Courtesy of Kaufmann et al. [9] and Loquercio et
al. [35]

D. Demonstrators
The Agilicious software and hardware stack is intended as a flexible
research platform. To illustrate its broad applicability, this section
showcases a set of research projects that have been enabled through
Agilicious. Specifically, we demonstrate the performance of our plat-
form in two different experimental setups covering hardware-in-the-
loop simulation and autonomous flight in the wild using only onboard
sensing.

D.1. Hardware in the Loop Simulation

Developing vision-based perception and navigation algorithms for ag-
ile flight is not only slow and time-consuming, due to the large amount
of data required to train and test perception algorithms in diverse set-
tings, but it progressively becomes less safe and more expensive as

more aggressive flights can lead to devastating crashes. This motivates
the Agilicious framework to support hardware-in-the-loop simulation,
which consists of flying a physical quadrotor in a motion-capture sys-
tem while observing virtual photorealistic environments, as previously
shown in [14]. The key advantage of hardware-in-the-loop simulation
over classical synthetic experiments [23] is the usage of real-world
dynamics and proprioceptive sensors, instead of idealized virtual de-
vices, combined with the ability to simulate arbitrarily sparse or dense
environments without the risk of crashing into real obstacles.

The simulation of complex 3D environments and realistic exterocep-
tive sensors is achieved using our high-fidelity quadrotor simulator [24]
built on Unity [61]. The simulator can offer a rich and configurable
sensor suite, including RGB cameras, depth sensors, optical flow, and



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 8

image segmentation, combined with variable sensor noise levels, mo-
tion blur, distortion and diverse environmental factors such as wind and
rain. The simulator achieves this by introducing only minimal delays
(see Figure 5A), ranging from 13ms for 640×480 VGA resolution to
22ms for 1920×1080 full HD images, when rendered on a NVIDIA
RTX 2080 GPU.

Overall, the integration of our agile quadrotor platform and high-
fidelity visual simulation provides an efficient framework for the rapid
development of vision-based navigation systems in complex and un-
structured environments.

D.2. Vision-based Agile Flight with Onboard Sensing and Compute

When a quadrotor can only rely on onboard vision and computation,
perception needs to be effective, low-latency, and robust to disturbances.
Violating this requirement may lead to crashes, especially during agile
and fast maneuvers where latency has to be low and robustness to
perception disturbances and noise must be high. However, vision sys-
tems either exhibit reduced accuracy or completely fail at high speeds
due to motion blur, large pixel displacements, and quick illumination
changes [62]. To overcome these challenges, vision-based navigation
systems generally build upon two different paradigms. The first uses
the traditional perception-planning-and-control pipeline, represented
by standalone blocks which are executed in sequence and designed
independently [2, 63–67]. Works in the second category substitute
either parts or the complete perception-planning-and-control pipeline
with learning-based methods [9, 68–76].

The Agilicious flight stack supports both paradigms and has been
used to compare traditional and learning-based methods on agile navi-
gation tasks in unstructured and structured environments (see Figure 5).
Specifically, Agilicious facilitated quantitative analyses of approaches
for autonomous acrobatic maneuvers [9](Fig. 5B-D) and high-speed
obstacle avoidance in previously unknown environments [35](Fig. 5E-
G). Both comparisons feature a rich set of approaches consisting of
traditional planning and control [34, 64, 66] as well as learning-based
methods [9, 35] with different input and output modalities. Thanks
to its flexibility, Agilicious enables an objective comparison of these
approaches on a unified control stack, without biasing results due to
different low-level control strategies.

3. DISCUSSION

The presented Agilicious framework substantially advances the pub-
lished state of the art in autonomous quadrotor platform research. It
offers advanced computing capabilities combined with the most power-
ful open-source and open-hardware quadrotor platform created to date,
opening the door for research on the next generation of autonomous
robots. We see three main axes for future research based on our work.

First, we hypothesize that future flying robots will be smaller,
lighter, cheaper, and consuming less power than what is possible today,
increasing battery life, crash-resilience, as well as thrust-to-weight
ratio and torque-to-inertia ratio [26]. This miniaturization is evident in
state-of-the-art research towards direct hardware implementations of
modern algorithms in the form of application-specific integrated circuit
(ASIC)s, such as the Navion [77], the Movidius [78], or the PULP
processor [79, 80]. These highly specialized in-silicon implementa-
tions are typically magnitudes smaller and more efficient than general
compute units. Their success is rooted in the specific structure many
algorithmic problems exhibit, such as the parallel nature of image data
or the factor-graph representations used in estimation, planning, and
control algorithms, like SLAM, model-predictive control, and neural
network inference.

Second, the presented framework was mainly demonstrated with
fixed-shape quadrotors. This is an advantage as the platform is eas-
ier to model and control, and less susceptible to hardware failures.

Nevertheless, platforms with a dynamic morphology are by design
more adaptable to the environment and potentially more power effi-
cient [81–84]. For example, to increase flight time, a quadrotor might
transform to a fixed-wing aircraft [85]. Due to its flexibility, Agilicious
is the ideal tool for the future development of morphable and soft aerial
systems.

Finally, vision-based agile flight is still in the early stages and has
not yet reached the performance of professional human pilots. The
main challenges lie in handling complex aerodynamics, e.g. tran-
sient torques or rotor inflow, low-latency perception and state esti-
mation, and recovery from failures at high speeds. In the last few
years, considerable progress has been made by leveraging data-driven
algorithms [9, 22, 35, 86] and novel sensors as event-based cam-
eras [36, 87], that provide a high dynamic range, low latency, and
low battery consumption [88]. A major opportunity for future work is
to complement the existing capabilities of Agilicious with novel com-
pute devices such as the Intel Loihi [89–91] or SynSense Dynap [92]
neuromorphic processing architecture, which are specifically designed
to operate in an event-driven compute scheme. Due to the modular
nature of Agilicious, individual software components can be replaced
by these novel computing architectures, supporting rapid iteration and
testing.

In summary, Agilicious offers a unique quadrotor testbed to acceler-
ate current and future research on fast autonomous flight. Its versatility
in both hardware and software allows deployment in a wide variety of
tasks, ranging from exploration or search and rescue missions to acro-
batic flight. Furthermore, the modularity of the hardware setup allows
integrating novel sensors or even novel compute hardware, enabling to
test such hardware on an autonomous agile vehicle. By open-sourcing
Agilicious, we provide the research and industrial community access
to a highly agile, versatile, and extendable quadrotor platform.

4. MATERIALS AND METHODS

Designing a versatile and agile quadrotor research platform requires
to co-design its hardware and software, while carefully trading off
competing design objectives such as onboard computing capacity and
platform agility. In the following, the design choices that resulted in the
flight hardware, compute hardware, and software design of Agilicious
(see Figure 1) are explained in detail.

A. Compute Hardware
To exploit the full potential of highly unstable quadrotor dynamics,
a high-frequency low-latency controller is needed. Both of these re-
quirements are difficult to meet with general-purpose operating sys-
tems, which typically come without any real-time execution guar-
antees. Therefore, we deploy a low-level controller with limited
compute capabilities but reliable real-time performance, which sta-
bilizes high-bandwidth dynamics, such as the motor speeds or the
vehicle’s bodyrate. This allows complementing the system with a
general-purpose high-level compute unit that can run Linux for versa-
tile software deployment, with significantly relaxed real-time require-
ments.

High-Level Compute Board. The high-level of the system architecture
provides all the necessary compute performance to run the full flight
stack, including estimation, planning, optimization-based control, neu-
ral network inference, or other demanding experimental applications.
Therefore, the main goal is to provide general-purpose computing
power, while complying with the strict size and weight limits. We
evaluate a multitude of different compute modules made from system-
on-a-chip (SoC) solutions since they allow inherently small footprints.
An overview is shown in Tab. 1. We exclude the evaluation of two popu-
lar contenders: (a) the Intel NUC platform, since it neither provides any



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 9

size and weight advantage over the Jetson Xavier AGX nor provides
a general-purpose GPU; and (b) the Raspberry Pi compute modules
since they do not offer any compute advantages over the Odroid and
UpBoard, and no size and weight advantage over the NanoPi product
family.

As we target general flight applications, fast prototyping, and ex-
perimentation, it is important to support a wide variety of software,
which is why we chose a Linux-based system. TensorFlow [93] and Py-
Torch [94] are some of the most prominent frameworks with hardware-
accelerated neural network inference. Both of them support acceler-
ated inference on the Nvidia CUDA general-purpose GPU architecture,
which renders nVidia products favorable, as other products have no or
poorly-supported accelerators. Therefore, four valid options remain,
listed in the second row of Tab. 1. While the Jetson Xavier AGX is be-
yond our size and weight goals, the Jetson Nano provides no advantage
over the Xavier NX, rendering both the Jetson TX2 and Xavier NX
viable solutions. Since these two CUDA-enabled compute modules
require breakout boards to connect to peripherals, our first choice is the
TX2 due to the better availability and diversity of such adapter boards
and their smaller footprint. For the breakout board we recommend
the ConnectTech Quasar [95], providing multiple USB ports, Ethernet,
serial ports, and other interfaces for sensors and cameras.

Low-Level Flight Controller. The Low-Level Flight Controller pro-
vides real-time low-latency interfacing and control. A simple and
widespread option is the open-source BetaFlight [40] software which
runs on many commercially available flight controllers, such as the
Radix[96]. However, BetaFlight is made for human-piloted drones
and optimized for a good human flight feeling, but not for autonomous
operation. Furthermore, even though it uses high-speed IMU readings
for the control loop, it only provides very limited sensor readings at
only 10 Hz. Therefore, Agilicious provides its own low-level flight
controller implementation called "agiNuttx", reusing the same hard-
ware as the BetaFlight controllers. This means that the wide variety
of commercially available products can be bought and reflashed with
agiNuttx to provide a low-level controller suited for autonomous agile
flight.

In particular, we recommend using the BrainFPV Radix [96] con-
troller, to deploy our agiNuttx software. The agiNuttx is based on the
open-source NuttX [97] real-time operating system, optimized to run
on embedded microcontrollers such as the STM32F4 used in many
BetaFlight products. Our agiNuttx implementation interfaces with the
motors’ electronic speed controller (ESC) over the digital bi-directional
DShot protocol, allowing not only to command the motors, but also
receive individual rotor speed feedback. This feedback is provided to
the high-level controller together with IMU, battery voltage, and flight
mode information over a 1 MBaud serial bus at 500 Hz. The agiNuttx
also provides closed-loop motor speed control, bodyrate control, and
measurement time synchronization, allowing estimation and control
algorithms to take full advantage of the available hardware.

B. Flight Hardware

To maximize the agility of the drone, it needs to be designed as
lightweight and small as possible [25] while still being able to ac-
commodate the Jetson TX2 compute unit. With this goal in mind, we
provide a selection of cheap off-the-shelf drone components summa-
rized in Tab. 1. The Armattan Chameleon 6 inch frame is used as a base
since it is one of the smallest frames with ample space for the compute
hardware. Being made out of carbon fiber, it is durable and lightweight.
The other structural parts of the quadrotor are custom-designed plastic
parts (PLA and TPU material) and produced using a 3D printer. Most
components are made out of PLA which is stiffer and only parts that
act as impact protectors or as predetermined breaking points are made

out of TPU. For propulsion, a 5.1 inch three-bladed propeller is used
in combination with a fast-spinning brushless DC motor rated at a high
maximum power of 758 W. The chosen motor-propeller combination
achieves a continuous static thrust of 4× 9.5 N on the quadrotor and
consumes about 400 W of power per motor. To match the high power
demand of the motors, a lithium-polymer battery with 1800 mA h and
a rating of 120C is used. Therefore, the total peak current of 110 A is
well within the 216 A limit of the battery. The motors are powered by
an electronic speed controller in the form of the Hobbywing XRotor
ESC, due to its compact form factor, its high continuous current rating
(60 A per motor), and support of the DShot protocol supporting motor
speed feedback.

C. Sensors
To navigate arbitrary uninstrumented environments, drones need means
to measure their absolute or relative location and state. Due to the size
and weight constraints of aerial vehicles, and especially the direct im-
pact of weight and inertia on the agility of the vehicle, visual-inertial
odometry has proven to be the go-to solution for aerial navigation.
The complementary sensing modality of cameras and IMUs, their low
price and excellent availability, together with the depth-sensing capa-
bilities of stereo camera configurations allow for a simple, compact,
and complete perception setup.

Furthermore, our agiNuttxflight controller already provides high-
rate filtered inertial measurements and can be combined with any
off-the-shelf camera [50–52] and open-source [43, 48, 55, 56] or com-
mercial [53, 54] software to implement a VIO pipeline. Additionally,
there exist multiple fully integrated products providing out-of-the-box
VIO solutions, such as the Intel RealSense [58], the Roboception
rc_visard [59], and the ModalAI Voxl CAM [60].

D. The Agilicious Flight Stack Software
To exploit the full potential of our platform and enable fast prototyping,
we provide the Agilicious flight stack as an open-source software
package. The main development goals for Agilicious are aligned with
our overall design goals: high versatility and modularity, low latency
for agile flight, and transferability between simulation and multiple
real-world platforms. These goals are met by splitting the software
stack into two parts.

The core library, called "agilib", is built with minimal dependencies
but provides all functionality needed for agile flight, implemented
as individual modules (illustrated in Figure 1). It can be deployed
on a large range of computing platforms, from lightweight low-power
devices to parallel neural network training farms built on heterogeneous
server architectures. This is enabled by avoiding dependencies on other
software components that could introduce compatibility issues and
rely only on the core C++-17 standard and the Eigen library for linear
algebra. Additionally, agilib includes a standalone set of unit tests and
benchmarks that can be run independently, with minimal dependencies,
and in a self-contained manner.

To provide compatibility to existing systems and software, the
second component is a ROS-wrapper, called "agiros", which enables
networked communication, data logging, provides a simple GUI in-
terface to command the vehicle and allows for integration with other
software components. This abstraction between "agiros" and the core
library "agilib" allows a more flexible deployment on systems or in
environments where ROS is not available, not needed, or communica-
tion overhead must be avoided. On the other hand, the ROS-enabled
Agilicious provides versatility and modularity due to a vast number of
open-source ROS packages provided by the research community.

For flexible and fast development, "agilib" uses modular software
components unified in an umbrella structure called "pipeline" and
orchestrated by a control logic, called "pilot". The modules consist of



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 10

without General-Purpose GPU

Product Odroid XU4 Intel UpBoard NanoPi Neo 3 NanoPi Neo air

CPU 8× 32-bit ARM 2.1 GHz 4× 64-bit Atom 1.92 GHz 4× 64-bit ARM 1.5 GHz 4× 32-bit ARM 1.2 GHz
RAM 2 GB LPDDR3 4 GB LPDDR3 2 GB LPDDR4 512 MB LPDDR3
GPU Mali-T628 Intel HD400 Mali-450 MP4 Mali-400 MP2
FLOPS ∼120 GFLOPS ∼ 115 GFLOPS ∼40 GFLOPS ∼10 GFLOPS
Storage up to 128 GB EMMC up to 64 GB EMMC only SD card 8 GB EMMC
Interfaces USB, Ethernet, Serial, I2C, SPI, GPIO USB, Ethernet, Serial, I2C, SPI, GPIO,

1 camera
USB, Ethernet, Serial, I2C, SPI, GPIO USB, Ethernet, WIFI, Serial, I2C, SPI,

GPIO, 1 camera
Size 83 × 58 × 19 mm 85 × 57 × 20 mm 40 × 40 × 23 mm 40 × 40 × 10 mm
Weight 59 g 79 g 36 g 24 g

with General-Purpose GPU

Product nVidia Jetson Nano nVidia Jetson TX2 nVidia Jetson Xavier NX nVidia Jetson AGX Xavier

CPU 4× 64-bit ARM 1.43 GHz 6× 64-bit ARM 2.0 GHz 6× 64-bit ARM 1.9 GHz 8× 64-bit ARM 2.26 GHz
RAM 4 GB LPDDR4 8 GB LPDDR4 8 GB LPDDR4 32 GB LPDDR4
GPU 128× Maxwell CUDA 256× Pascal CUDA 384× Volta CUDA 512× Volta CUDA
FLOPS 472 GFLOPS 1.33 TFLOPS 2.12 TFLOPS 11 TFLOPS
Storage 16 GB EMMC 32 GB EMMC 16 GB EMMC 32 GB EMMC
Interfaces USB, Ethernet, Serial, I2C, SPI, GPIO,

4 cameras
USB, Ethernet, WIFI, Serial, I2C, SPI,

GPIO, 6 cameras
USB, Ethernet, Serial, I2C, SPI, GPIO,

6 cameras
USB, Ethernet, Serial, I2C, SPI, GPIO,

6 cameras
Size 69.9 × 45 × 22 mm 87 × 50 × 34 mm 69.9 × 45 × 22 mm 100 × 87 × 58 mm
Weight 63 g 154 g 79 g 650 g

Table 1. Overview of compute hardware commonly used on autonomous flying vehicles. Due to the emerging trend of deploying learning-based
methods onboard, hardware solutions are grouped according to the presence of a general-purpose GPU, enabling real-time inference.

Component Product Specification

Frame Armattan Chameleon 6 inch 4 mm carbon fiber, 86 g
Motor Xrotor 2306 23×6 mm stator, 2400 kV,

758 W, 4× 27.5 g
Propeller Azure Power SFP 5148 5.1 inch length and 4.8 inch

pitch, 4× 5 g
Battery Tattoo R-Line 1800 4× 3.7 V, 1800 mA h, 199 g
Flight Controller BrainFPV radix BetaFlight or custom firmware,

6 g
Motor Controller HobbyWing XRotor DShot protocol, 4× 60 A, 15 g
Compute Unit nVidia Jetson TX2 6× ARM 2.0 GHz, 256×

CUDA cores, 8 GB, 154 g

Table 2. Overview of the components of the flight hardware design.

an "estimator", "sampler", "controllers", and a "bridge", all working
together to track a so-called "reference". These modules are executed
in sequential order (illustrated in Figure 1) within a forward pass
of the pipeline, corresponding to one control cycle. However, each
module can spawn its individual threads to perform parallel tasks, e.g.
asynchronous sensor data processing. Agilicious provides a collection
of state-of-the-art implementations for each module inherited from
base classes, allowing to create new implementations outside of the
core library, and linking them into the pilot at runtime. Moreover,
Agilicious is not only capable to control a drone when running onboard
the vehicle, but can also run offboard on computationally more capable
hardware and send commands to the drone over low-latency wireless

serial interfaces.
Finally, the core library is completed by a physics simulator. While

this might seem redundant due to the vast variety of simulation
pipelines available [23, 24, 98], it allows to use high-fidelity mod-
els (e.g. BEM [22] for aerodynamics), evaluate software prototypes
without having to interface with other frameworks, avoids dependen-
cies, and enables even simulation-based continuous integration testing
that can run on literally any platform. The pilot, software modules, and
simulator are all described in the following sections.

D.1. Pilot

The pilot contains the main logic needed for flight operation, handling
of the individual modules, and interfaces to manage references and
task commands. In its core, it loads and configures the software mod-
ules according to YAML [99] parameter files, runs the control loop,
and provides simplified user interfaces to manage flight tasks, such
as position and velocity control or trajectory tracking. For all state
descriptions, we use a right-handed coordinate system located in the
center of gravity, with the Bez pointing in body-relative upward thrust
direction, and Bex pointing along with the drone’s forward direction.
Motion is represented with respect to an inertial world frame with
Iez pointing against the gravity direction, where translational deriva-
tives (e.g. velocity) are expressed in the world frame and rotational
derivatives (e.g. bodyrate) are expressed in the body frame.

Pipeline. The pipeline is a distinct configuration of the sequentially
processed modules. These pipeline configurations can be switched

https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://up-board.org/up/specifications/
https://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO3
https://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO_Air
https://developer.nvidia.com/embedded/jetson_nano
https://developer.nvidia.com/embedded/jetson_tx2
https://developer.nvidia.com/embedded/jetson_xavier_nx
https://developer.nvidia.com/embedded/jetson-agx-xavier


Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 11

at runtime by the pilot or the user, allowing to switch to backup con-
figurations in an emergency, or quickly alternate between different
prototyping configurations.

Estimator. The first module in the pipeline is the estimator,
which provides a time-stamped state estimate for the subsequent
software modules in the control cycle. A state estimate x =
[p, q, v, ω, a, τ, j, s, bω , ba, fd, f ], represents position p, orientation
unit quaternion q, velocity v, bodyrate ω, linear a and angular τ
accelerations, jerk j, snap s, gyroscope and accelerometer bias bω

and ba, and desired and actual single rotor thrusts fd and f . Agili-
cious provides a feed-through estimator to include external estimates
or ground-truth from a simulation, as well as two extended Kalman
filters, one with IMU filtering, and one using the IMU as propagation
model. These estimators can easily be replaced or extended to work
with additional measurement sources, such as GPS or altimeters, other
estimation systems, or even implement complex localization pipelines
such as visual-inertial odometry.

Sampler. For trajectory tracking using a state estimate from the afore-
mentioned estimator, the controller module needs to be provided with a
subset of points of the trajectory that encode the desired progress along
it, provided by the sampler. Agilicious implements two types of sam-
plers: a time-based sampling scheme that computes progress along the
trajectory based on the time since trajectory start, and a position-based
sampling scheme that selects trajectory progress based on the current
position of the platform, trading off temporally accurate tracking for
higher robustness and lower positional tracking error.

Controller. To control the vehicle along the sampled reference setpoints,
a multitude of controllers are available, which provide the closed-loop
commands for the low-level controller. We provide a state-of-the-art
MPC that uses the full non-linear model of the platform and which
allows to track highly agile references using single-rotor thrust com-
mands or bodyrate control.Additionally, we include a cascaded geomet-
ric controller based on the quadrotor’s differential flatness [100]. The
pipeline can cascade two controllers, which even allows combining the
aforementioned MPC [41] or geometric approaches with an interme-
diate controller for which we provide an L1 adaptive controller [101]
and an incremental nonlinear dynamic inversion controller [41].

Bridge. A bridge serves as an interface to hardware or software by
sending control commands to a low-level controller or other means of
communication sinks. Low-level commands can either be single rotor
thrusts or bodyrates in combination with a collective thrust. Agilicious
provides a set of bridges to communicate via commonly used protocols
such as ROS, SBUS, and serial. While the ROS-bridge can be used
to easily integrate Agilicious in an existing software stack that relies
on ROS, the SBUS protocol is a widely used standard in the FPV
community and therefore allows to interface Agilicious to off-the-
shelf flight controllers such as BetaFlight [40]. For simple simulation,
there is a specific bridge to interface with the popular RotorS [23]
simulator, which is however less accurate than our own simulation
described in Sec. D.2. As Agilicious is written in a general abstract
way, it runs on onboard compute modules and offboard, for which case
we provide a bridge to interface with the LAIRD[42] wireless serial
interface. Finally, Agilicious also provides a bridge to communicate to
the custom low-level controller described in Sec. A. This provides the
advantage of gaining access to closed-loop single rotor speed control,
high-frequency IMU, rotor speed, and voltage measurements at 500 Hz,
all provided to the user through the bridge.

References. References are used in conjunction with a controller to
encode the desired flight path of a quadrotor. In Agilicious, a reference
is fed to the sampler, which generates a receding-horizon vector of
setpoints that are then passed to the controller. The software stack

implements a set of reference types, consisting of Hover, Velocity, Poly-
nomial, and Sampled. While Hover references are uniquely defined by
a reference position and a yaw angle, a Velocity reference specifies a
desired linear velocity with a yaw rate. By exploiting the differential
flatness of the quadrotor platform, Polynomial references describe the
position and yaw of the quadrotor as polynomial functions of time.
Sampled references provide the most general reference representations.
Agilicious provides interfaces to generate, and receive such sampled
references and also defines a message and file format to store refer-
ences to a file. By defining such formats, a wide variety of trajectories
can be generated, communicated, saved, and executed using Python
or other languages. Finally, to simplify the integration and deploy-
ment of other control approaches, Agilicious also exposes a command
feedthrough, that allows taking direct control over the applied low-
level commands. For safety, even when command feedthrough is used,
Agilicious provides readily available back-up control that can take over
on user request or on timeout.

Guard. To further support users in fast prototyping, Agilicious provides
a so-called guard. This guard uses the quadrotor’s state-estimate or an
alternative estimate (e.g. from motion capture when flying with VIO
prototypes) together with a user-defined spatial bounding box to detect
unexpected deviations from the planned flight path. Further detection
metrics can be implemented by the user. Upon violation of e.g. the
spatial bounding box, the guard can switch control to an alternative
pipeline using a backup estimate and control configuration. This safety
pipeline can e.g. use a motion capture system and a simple geometric
controller, while the main pipeline runs a VIO estimator, an MPC,
reinforcement learning control strategies, or other software prototypes.
By providing this measure of backup, Agilicious significantly reduces
the risk of crashes when testing novel algorithms, and allows to iterate
over research prototypes faster.

D.2. Simulation

The Agilicious software stack includes a simulator that allows sim-
ulating quadrotor dynamics at various levels of fidelity to accelerate
prototyping and testing. Specifically, Agilicious models motor dynam-
ics and aerodynamics acting on the platform. To also incorporate the
different, possibly off-the-shelf, low-level controllers that can be used
on the quadrotors, the simulator can optionally simulate the behav-
ior of low-level controllers. One simulator update, typically called at
1 kHz, includes a call to the simulated low-level controller, the motor
model, the aerodynamics model, and the rigid body dynamics model
in a sequential fashion. Each of these components is explained in the
following.

Low-Level Controller & Motor Model. Simulated low-level controllers
run at simulation frequency and convert collective thrust and bodyrate
commands into individual motor speed commands. The usage of
a simulated low-level controller is optional if the computed control
commands are already in the form of individual rotor thrusts. In
this case, the thrusts are mapped to motor speed commands and then
directly fed to the simulated motor model. The motors are modeled as
a first-order system with a time constant which can be identified on a
thrust test stand.

Aerodynamics. The simulated aerodynamics model lift and drag pro-
duced by the rotors from the current ego-motion of the platform and
the individual rotor speeds. Agilicious implements two rotor mod-
els: Quadratic and BEM. The Quadratic model implements a simple
quadratic mapping from rotor rotational speed to produced thrust, as
commonly done in quadrotor simulators [23, 24, 98]. While such a
model does not account for effects imposed by the movement of a rotor
through the air, it is highly efficient to compute. In contrast, the BEM
model leverages Blade-Element-Momentum-Theory (BEM) to account



Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 12

for the effects of varying relative airspeed on the rotor thrust. To further
increase the fidelity of the simulation, a neural network predicting the
residual forces and torques (e.g. unmodeled rotor to rotor interactions
and turbulence) can be integrated into the aerodynamics model. For
details regarding the BEM model and the neural network augmentation,
we refer the reader to [22].

Rigid Body Dynamics. Provided with a model of the forces and torques
acting on the platform predicted by the aerodynamics model, the system
dynamics of the quadrotor are integrated using a 4th order Runge-Kutta
scheme with a step size of 1 ms. Agilicious also implements different
integrators such as explicit Euler or symplectic Euler.

Apart from providing its own state-of-the-art quadrotor simulator,
Agilicious can also be interfaced with external simulators. Interfaces to
the widely-used RotorS quadrotor simulator [23] and Flightmare [24],
including the HIL simulator, are already provided in the software stack.

5. ACKNOWLEDGMENTS

Author Contribution. P.F. developed the Agilicious software concepts
and architecture, contributed to the Agilicious implementation, helped
with the experiments, and wrote the manuscript. E.K. contributed
to the Agilicious implementation, designed the Agilicious hardware,
helped with the experiments, and wrote the manuscript. A.R., R.P.,
S.S., and L.B. contributed to the Agilicious implementation, helped
with the experiments, and wrote the manuscript. T.L. evaluated the
hardware components, designed and built the Agilicious hardware,
helped with the experiments, and wrote the manuscript. Y.S. con-
tributed to the Agilicious implementation, helped with the experiments,
and wrote the manuscript. A.L. helped with the experiments and wrote
the manuscript. D.S. provided funding, contributed to the design and
analysis of the experiments, and revised the manuscript.

Funding. This work was supported by the National Centre of Com-
petence in Research (NCCR) Robotics through the Swiss National
Science Foundation (SNSF) and the European Union’s Horizon 2020
Research and Innovation Program under grant agreement No. 871479
(AERIAL-CORE) and the European Research Council (ERC) under
grant agreement No. 864042 (AGILEFLIGHT).

Data and Materials. The main purpose of this paper is to share our
data and materials. Therefore all materials, both software as well as
hardware designs, are open-source accessible at https://agilicious.dev
under the GPL v3.0 license.

REFERENCES

1. D. Mellinger, N. Michael, V. Kumar, Trajectory generation and control for
precise aggressive maneuvers with quadrotors, Int. J. Robot. Research
664–674 (2012).

2. G. Loianno, C. Brunner, G. McGrath, V. Kumar, Estimation, control,
and planning for aggressive flight with a small quadrotor with a single
camera and imu, IEEE Robotics and Automation Letters 404–411 (2017).

3. E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun,
D. Scaramuzza, Beauty and the beast: Optimal methods meet learn-
ing for drone racing, 2019 International Conference on Robotics and
Automation (ICRA), 690–696 (IEEE, 2019).

4. K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, V. Kumar, Fast,
autonomous flight in gps-denied and cluttered environments, J. Field
Robot. 101–120 (2018).

5. B. Zhou, J. Pan, F. Gao, S. Shen, RAPTOR: robust and perception-
aware trajectory replanning for quadrotor fast flight, IEEE Transactions
on Robotics (2021).

6. P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,

M. Muglikar, D. Scaramuzza, Alphapilot: Autonomous drone racing,
Robotics: Science and Systems (RSS) (2020).

7. S. Li, M. M. Ozo, C. D. Wagter, G. C. de Croon, Autonomous drone
race: A computationally efficient vision-based navigation and control
strategy, Robotics and Autonomous Systems 133 (2020).

8. H. Nguyen, M. Kamel, K. Alexis, R. Siegwart, Model predictive control
for micro aerial vehicles: A survey, 2021 European Control Conference
(ECC), 1556–1563 (IEEE, 2021).

9. E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, D. Scara-
muzza, Deep drone acrobatics, RSS: Robotics, Science, and Systems
(2020).

10. P. Foehn, A. Romero, D. Scaramuzza, Time-optimal planning for
quadrotor waypoint flight, Science Robotics 6 (2021).

11. H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga,
A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, others,
Challenges and implemented technologies used in autonomous drone
racing, Intelligent Service Robotics (2019).

12. J. A. Cocoma-Ortega, J. Martínez-Carranza, Towards high-speed local-
isation for autonomous drone racing, Mexican International Conference
on Artificial Intelligence (Springer, 2019).

13. R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner,
E. Cristofalo, D. Scaramuzza, M. Schwager, A. Kapoor, Airsim drone
racing lab, NeurIPS 2019 Competition and Demonstration Track (PMLR,
2020).

14. W. Guerra, E. Tal, V. Murali, G. Ryou, S. Karaman, FlightGoggles:
Photorealistic sensor simulation for perception-driven robotics using
photogrammetry and virtual reality, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE, 2019).

15. CORDIS - European Comission, AgileFlight, https://cordis.europa.eu/
project/id/864042. Accessed: 2021-7-30.

16. L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, M. Pollefeys,
PIXHAWK: A micro aerial vehicle design for autonomous flight using
onboard computer vision, Autonom. Rob. 21–39 (2012).

17. I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, J. Nieto,
R. Siegwart, Build your own Visual-Inertial drone: A Cost-Effective and
Open-Source autonomous drone, IEEE Robot. Autom. Mag. 89–103
(2018).

18. M. Faessler, A. Franchi, D. Scaramuzza, Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed
trajectories, IEEE Robot. Autom. Lett. 620–626 (2018).

19. H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A. Millane, R. Sieg-
wart, J. Nieto, An open-source system for vision-based micro-aerial
vehicle mapping, planning, and flight in cluttered environments, J. Field
Robot. 642–666 (2020).

20. T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, M. Saska,
The MRS UAV system: Pushing the frontiers of reproducible research,
real-world deployment, and education with autonomous unmanned
aerial vehicles, J. Intell. Rob. Syst. p. 26 (2021).

21. G. Hattenberger, M. Bronz, M. Gorraz, Using the paparazzi uav system
for scientific research, International Micro Air Vehicle Conference and
Competition, 247–252 (2014).

22. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, D. Scaramuzza, Neu-
robem: Hybrid aerodynamic quadrotor model, RSS: Robotics, Science,
and Systems (2021).

23. F. Furrer, M. Burri, M. Achtelik, R. Siegwart. Rotors—a modular gazebo
mav simulator framework. Robot Operating System (ROS) (Springer,
2016), 595–625.

24. Y. Song, S. Naji, E. Kaufmann, A. Loquercio, D. Scaramuzza, Flight-
mare: A flexible quadrotor simulator, Conference on Robot Learning
(2020).

25. V. Kumar, N. Michael, Opportunities and challenges with autonomous
micro aerial vehicles, The International Journal of Robotics Research
1279–1291 (2012).

26. D. Floreano, R. J. Wood, Science, technology and the future of small
autonomous drones, Nature 460–466 (2015).

27. E. Tal, S. Karaman, Accurate tracking of aggressive quadrotor trajec-
tories using incremental nonlinear dynamic inversion and differential
flatness, IEEE Transactions on Control Systems Technology 1203–1218
(2020).

https://agilicious.dev
https://cordis.europa.eu/project/id/864042
https://cordis.europa.eu/project/id/864042


Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 13

28. A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, S. Karaman, The
blackbird uav dataset, The International Journal of Robotics Research
1346–1364 (2020).

29. L. Meier, D. Honegger, M. Pollefeys, Px4: A node-based multithreaded
open source robotics framework for deeply embedded platforms, 2015
IEEE International Conference on Robotics and Automation (ICRA),
6235–6240 (2015).

30. P. D. SAS, Parrot ANAFI ai, https://www.parrot.com/en/drones/anafi-ai.
Accessed: 2021-7-20.

31. DJI, DJI digital FPV system, https://www.dji.com/fpv. Accessed: 2021-
7-20.

32. Skydio, Skydio (2021).
33. W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, P. Kozierski,

Crazyflie 2.0 quadrotor as a platform for research and education in
robotics and control engineering, International Conference on Methods
and Models in Automation and Robotics (MMAR), 37–42 (2017).

34. D. Falanga, P. Foehn, P. Lu, D. Scaramuzza, Pampc: Perception-aware
model predictive control for quadrotors, IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS), 1–8 (IEEE, 2018).

35. A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, D. Scara-
muzza, Agile autonomy: Learning high-speed flight in the wild, Science
Robotics (2021). Under review.

36. S. Sun, G. Cioffi, C. De Visser, D. Scaramuzza, Autonomous quadrotor
flight despite rotor failure with onboard vision sensors: Frames vs.
events, IEEE Robotics and Automation Letters 580–587 (2021).

37. B. Nisar, P. Foehn, D. Falanga, D. Scaramuzza, VIMO: Simultaneous
visual inertial Model-Based odometry and force estimation, IEEE Robot.
Autom. Lett. 2785–2792 (2019).

38. Y. Song, M. Steinweg, E. Kaufmann, D. Scaramuzza, Autonomous
drone racing with deep reinforcement learning, IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS) (2021).

39. J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, D. Scaramuzza,
Are we ready for autonomous drone racing? the uzh-fpv drone racing
dataset, IEEE Int. Conf. Robot. Autom. (ICRA) (2019).

40. The Betaflight Open Source Flight Controller Firmware Project,
Betaflight, https://github.com/betaflight/betaflight. Accessed: 2021-7-
20.

41. S. Sun, A. Romero, P. Foehn, E. Kaufmann, D. Scaramuzza, A com-
parative study of nonlinear mpc and differential-flatness-based control
for quadrotor agile flight, IEEE Transactions on Robotics 1–17 (2022).

42. Laird connectivity, https://www.lairdconnect.com/. Accessed: 2021-7-
20.

43. C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza, SVO:
Semidirect visual odometry for monocular and multicamera systems,
IEEE Trans. Robot. 249–265 (2017).

44. Z. Zhang, D. Scaramuzza, A tutorial on quantitative trajectory evalua-
tion for visual(-inertial) odometry, IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS) (2018).

45. A. Romero, S. Sun, P. Foehn, D. Scaramuzza, Model predictive con-
touring control for time-optimal quadrotor flight, IEEE Transactions on
Robotics 1–17 (2022).

46. F. Nan, S. Sun, P. Foehn, D. Scaramuzza, Nonlinear mpc for quadrotor
fault-tolerant control, IEEE Robotics and Automation Letters 5047–5054
(2022).

47. A. I. Automation, Ati mini40-si-20-1, https://www.ati-ia.com/products/ft/
ft_models.aspx?id=Mini40. Accessed: 2021-11-30.

48. C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza, Svo
pro, http://rpg.ifi.uzh.ch/svo_pro.html. Accessed: 2021-11-30.

49. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, R. Siegwart, Extending
kalibr: Calibrating the extrinsics of multiple imus and of individual axes,
IEEE Int. Conf. Robot. Autom. (ICRA) (2016).

50. SevenSense, Alphasense, https://www.sevensense.ai/product/
alphasense-position. Accessed: 2021-11-30.

51. M. EYE, S210, https://www.mynteye.com/pages/s210. Accessed: 2021-
11-30.

52. M. Vision, Bluefox, https://www.matrix-vision.com/en/products/areas/
MA08. Accessed: 2021-11-30.

53. ArtiSense, Artislam, https://www.artisense.ai/vinspro-2020. Accessed:
2021-11-30.

54. SLAMcore, Spatial intelligence sdk, https://www.slamcore.com/
spatial-intelligence-sdk. Accessed: 2021-11-30.

55. T. Qin, P. Li, S. Shen, Vins-mono: A robust and versatile monocular
visual-inertial state estimator, IEEE Trans. Robot. (2018).

56. P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, G. Huang, Openvins: A
research platform for visual-inertial estimation, IEEE Int. Conf. Robot.
Autom. (ICRA) (2020).

57. J. Delmerico, D. Scaramuzza, A benchmark comparison of monocular
visual-inertial odometry algorithms for flying robots, IEEE Int. Conf.
Robot. Autom. (ICRA), 2502–2509 (2018).

58. Intel realsense d400 series product family, https://www.intel.com/
content/dam/support/us/en/documents/emerging-technologies/
intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.
pdf (2019).

59. Roboception, rc_visard, https://roboception.com/en/rc_visard-en/.
60. ModalAI, Voxl cam core dev kit, https://www.modalai.com/pages/

voxl-cam-perception-engine. Accessed: 2021-11-30.
61. A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange,

Unity: A general platform for intelligent agents, arXiv e-prints (2018).
62. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,

I. Reid, J. J. Leonard, Past, present, and future of simultaneous local-
ization and mapping: Toward the robust-perception age, IEEE Trans.
Robot. (2016).

63. H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, J. I. Nieto, Voxblox:
Incremental 3d euclidean signed distance fields for on-board MAV
planning, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 1366–1373
(2017).

64. P. Florence, J. Carter, R. Tedrake. Integrated perception and control at
high speed: Evaluating collision avoidance maneuvers without maps.
Algorithmic Foundations of Robotics XII (Springer, 2020), 304–319.

65. D. Falanga, E. Mueggler, M. Faessler, D. Scaramuzza, Aggressive
quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision, IEEE Int. Conf. Robot. Autom. (ICRA), 5774–
5781 (IEEE, 2017).

66. B. Zhou, F. Gao, L. Wang, C. Liu, S. Shen, Robust and efficient quadro-
tor trajectory generation for fast autonomous flight, IEEE Robotics and
Automation Letters 3529–3536 (2019).

67. D. Falanga, E. Mueggler, M. Faessler, D. Scaramuzza, Aggressive
quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision, IEEE Int. Conf. Robot. Autom. (ICRA), 5774–
5781 (2017).

68. W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, R. Urtasun,
End-to-end interpretable neural motion planner, IEEE Int. Conf. Comput.
Vis. Pattern Recog. (CVPR), 8660–8669 (2019).

69. W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, R. Urtasun, Dsdnet:
Deep structured self-driving network, Eur. Conf. Comput. Vis. (ECCV),
156–172 (2020).

70. S. Bansal, V. Tolani, S. Gupta, J. Malik, C. J. Tomlin, Combining opti-
mal control and learning for visual navigation in novel environments,
Conference on Robot Learning, CoRL 2019, 420–429 (PMLR, 2019).

71. N. Homayounfar, W.-C. Ma, J. Liang, X. Wu, J. Fan, R. Urtasun,
Dagmapper: Learning to map by discovering lane topology, IEEE
Int. Conf. Comput. Vis. Pattern Recog. (CVPR), 2911–2920 (2019).

72. Z. Zhang, D. Scaramuzza, Perception-aware receding horizon nav-
igation for mavs, IEEE Int. Conf. Robot. Autom. (ICRA), 2534–2541
(2018).

73. S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, M. Hebert, Learning monocular reactive UAV control in
cluttered natural environments, IEEE Int. Conf. Robot. Autom. (ICRA),
1765–1772 (2013).

74. F. Sadeghi, S. Levine, CAD2RL: real single-image flight without a
single real image, Robotics: Science and Systems RSS, N. M. Amato,
S. S. Srinivasa, N. Ayanian, S. Kuindersma, eds. (2017).

75. A. Loquercio, A. I. Maqueda, C. R. del-Blanco, D. Scaramuzza, Dronet:
Learning to fly by driving, IEEE Robotics Autom. Lett. 1088–1095 (2018).

76. D. Gandhi, L. Pinto, A. Gupta, Learning to fly by crashing, International
Conference on Intelligent Robots and Systems, IROS, 3948–3955 (2017).

77. A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, Navion: A
2-mw fully integrated Real-Time Visual-Inertial odometry accelerator

https://www.parrot.com/en/drones/anafi-ai
https://www.dji.com/fpv
https://github.com/betaflight/betaflight
https://www.lairdconnect.com/
https://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
https://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
http://rpg.ifi.uzh.ch/svo_pro.html
https://www.sevensense.ai/product/alphasense-position
https://www.sevensense.ai/product/alphasense-position
https://www.mynteye.com/pages/s210
https://www.matrix-vision.com/en/products/areas/MA08
https://www.matrix-vision.com/en/products/areas/MA08
https://www.artisense.ai/vinspro-2020
https://www.slamcore.com/spatial-intelligence-sdk
https://www.slamcore.com/spatial-intelligence-sdk
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://roboception.com/en/rc_visard-en/
https://www.modalai.com/pages/voxl-cam-perception-engine
https://www.modalai.com/pages/voxl-cam-perception-engine


Research Article: Science Robotics Vol. 7, Issue 67, 2022 University of Zurich 14

for autonomous navigation of nano drones, IEEE J. Solid-State Circuits
1106–1119 (2019).

78. Intel Corporation, Intel movidius myriad X vision process-
ing unit, https://www.intel.com/content/www/us/en/products/details/
processors/movidius-vpu/movidius-myriad-x.html. Accessed: 2021-
8-2.

79. D. Palossi, A. Loquercio, F. Conti, F. Conti, E. Flamand, E. Flamand,
D. Scaramuzza, L. Benini, L. Benini, A 64mw dnn-based visual navi-
gation engine for autonomous nano-drones, IEEE Internet of Things
Journal 1–1 (2019).

80. D. Palossi, F. Conti, L. Benini, An open source and open hardware
deep Learning-Powered visual navigation engine for autonomous Nano-
UAVs, 2019 15th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 604–611 (2019).

81. E. Ajanic, M. Feroskhan, S. Mintchev, F. Noca, D. Floreano, Bioin-
spired wing and tail morphing extends drone flight capabilities, Science
Robotics 5 (2020).

82. E. Chang, L. Y. Matloff, A. K. Stowers, D. Lentink, Soft biohybrid
morphing wings with feathers underactuated by wrist and finger motion,
Science Robotics 5 (2020).

83. D. Falanga, K. Kleber, S. Mintchev, D. Floreano, D. Scaramuzza, The
foldable drone: A morphing quadrotor that can squeeze and fly, IEEE
Robotics and Automation Letters 209–216 (2019).

84. L. Bauersfeld, L. Spannagl, G. Ducard, C. Onder, Mpc flight control for
a tilt-rotor vtol aircraft, IEEE Transactions on Aerospace and Electronic
Systems 1–13 (2021).

85. R. D’Sa, D. Jenson, N. Papanikolopoulos, Suav:q - a hybrid approach
to solar-powered flight, 2016 IEEE International Conference on Robotics
and Automation (ICRA), 3288–3294 (2016).

86. G. Torrente, E. Kaufmann, P. Föhn, D. Scaramuzza, Data-driven
mpc for quadrotors, IEEE Robotics and Automation Letters 3769–3776
(2021).

87. D. Falanga, K. Kleber, D. Scaramuzza, Dynamic obstacle avoidance
for quadrotors with event cameras, Science Robotics 5 (2020).

88. G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, D. Scaramuzza,
Event-based vision: A survey, IEEE Trans. Pattern Anal. Machine Intell.
(2020).

89. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H.
Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic manycore
processor with On-Chip learning, IEEE Micro 82–99 (2018).

90. J. Dupeyroux, J. J. Hagenaars, F. Paredes-Vallés, G. C. de Croon,
Neuromorphic control for optic-flow-based landing of mavs using the

loihi processor, 2021 IEEE International Conference on Robotics and
Automation (ICRA), 96–102 (IEEE, 2021).

91. A. Vitale1, A. Renner, C. Nauer, D. Scaramuzza, Y. Sandamirskaya,
Event-driven vision and control for uavs on a neuromorphic chip, IEEE
Int. Conf. Robot. Autom. (ICRA) (2021).

92. S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, A scalable multicore ar-
chitecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (DYNAPs), IEEE Trans. Biomed.
Circuits Syst. 106–122 (2018).

93. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems (2015). Software available from
tensorflow.org.

94. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, R. Garnett, eds. (Curran Associates, Inc., 2019),
8024–8035.

95. Connect Tech Inc., Quasar carrier board, https://connecttech.com/
product/quasar-carrier-nvidia-jetson-tx2/ (2019). Accessed: 2021-7-
20.

96. M. Luessi, radix, https://www.brainfpv.com/product/radix-fc/ (2017).
Accessed: 2021-7-20.

97. The Apache Software Foundation, NuttX, https://nuttx.apache.org/.
Accessed: 2021-7-20.

98. S. Shah, D. Dey, C. Lovett, A. Kapoor, Airsim: High-fidelity visual and
physical simulation for autonomous vehicles, Field and service robotics,
621–635 (Springer, 2018).

99. O. Ben-Kiki, C. Evans, I. D. Net, YAML ain’t markup language (YAML™)
version 1.2, https://yaml.org/spec/1.2/spec.pdf (2009). Accessed: 2021-
7-20.

100. D. Mellinger, V. Kumar, Minimum snap trajectory generation and con-
trol for quadrotors, IEEE Int. Conf. Robot. Autom. (ICRA), 2520–2525
(2011).

101. D. Hanover, E. Kaufmann, P. Foehn, D. Scaramuzza, Performance,
precision, and payloads: Adaptive optimal control for quadrotors under
uncertainty, IEEE Robot. Autom. Lett. (2021).

https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
https://www.brainfpv.com/product/radix-fc/
https://nuttx.apache.org/
https://yaml.org/spec/1.2/spec.pdf

	Introduction
	Results
	Trajectory Tracking Performance
	Control Latency
	Visual-Inertial State Estimation
	Demonstrators
	Hardware in the Loop Simulation
	Vision-based Agile Flight with Onboard Sensing and Compute


	Discussion
	Materials and Methods
	Compute Hardware
	Flight Hardware
	Sensors
	The Agilicious Flight Stack Software
	Pilot
	Simulation


	Acknowledgments

