Robotics meets Fluid Dynamics: A Characterization of the Induced Airflow around a Quadrotor

Image Credit: Leonard Bauersfeld

Abstract

The widespread adoption of quadrotors for diverse applications, from agriculture to public safety, necessitates an understanding of the aerodynamic disturbances they create. This paper introduces a computationally lightweight model for estimating the time-averaged magnitude of the induced flow below quadrotors in hover. Unlike related approaches that rely on expensive computational fluid dynamics (CFD) simulations or drone specific time-consuming empirical measurements, our method leverages classical theory from turbulent flows. By analyzing over 16 hours of flight data from drones of varying sizes within a large motion capture system, we show for the first time that the combined flow from all drone propellers is well-approximated by a turbulent jet after 2.5 drone-diameters below the vehicle. Using a novel normalization and scaling, we experimentally identify model parameters that describe a unified mean velocity field below differently sized quadrotors. The model, which requires only the drone’s mass, propeller size, and drone size for calculations, accurately describes the far-field airflow over a long-range in a very large volume which is impractical to simulate using CFD. Our model offers a practical tool for ensuring safer operations near humans, optimizing sensor placements and drone control in multi-agent scenarios. We demonstrate the latter by designing a controller that compensates for the downwash of another drone, leading to a four times lower altitude deviation when passing below.

Leonard Bauersfeld
Leonard Bauersfeld
PhD Student

My research interests lie in the combination of classical methods and machine learning methods for modeling, perception-aware control, and vision-based state estimation for autonomous aerial vehicles.